Found 2670 publications. Showing page 33 of 267:
Research communities, engagement campaigns, and administrative agents are increasingly valuing low-cost air-quality monitoring technologies, despite data quality concerns. Mobile low-cost sensors have already been used for delivering a spatial representation of pollutant concentrations, though less attention is given to their uncertainty quantification. Here, we perform static/on-bike inter-comparison tests to assess the performance of the Snifferbike sensor kit in measuring outdoor PM2.5 (Particulate Matter < 2.5 μm). We build a network of citizen-operated Snifferbike sensors in Kristiansand, Norway, and calibrate the measurements using Machine Learning techniques to estimate the concentrations of PM2.5 along the city roads. We also propose a method to estimate the minimum number of PM2.5 measurements required per road segment to assure data representativeness. The co-location of three Snifferbike kits (Sensirion SPS30) at the monitoring station showed a RMSD of 7.55 μg m−3. We approximate that one km h−1 increase in the speed of the bikes will add 0.03 - 0.04 μg m−3 to the Standard Deviation of the Snifferbike PM2.5 measurements. We estimate that at least 27 measurements per road segment are required (50 m here) if the data are sufficiently dispersed over time. We recommend calibrating the mobile sensors when they coincide with reference monitoring stations.
2023
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface mode
Ammonia (NH3) is an important atmospheric constituent. It plays a role in air quality and climate through the formation of ammonium sulfate and ammonium nitrate particles. It has also an impact on ecosystems through deposition processes. About 85 % of NH3 global anthropogenic emissions are related to food and feed production and, in particular, to the use of mineral fertilizers and manure management. Most global chemistry transport models (CTMs) rely on bottom-up emission inventories, which are subject to significant uncertainties. In this study, we estimate emissions from livestock by developing a new module to calculate ammonia emissions from the whole agricultural sector (from housing and storage to grazing and fertilizer application) within the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) global land surface model. We detail the approach used for quantifying livestock feed management, manure application, and indoor and soil emissions and subsequently evaluate the model performance. Our results reflect China, India, Africa, Latin America, the USA, and Europe as the main contributors to global NH3 emissions, accounting for 80 % of the total budget. The global calculated emissions reach 44 Tg N yr−1 over the 2005–2015 period, which is within the range estimated by previous work. Key parameters (e.g., the pH of the manure, timing of N application, and atmospheric NH3 surface concentration) that drive the soil emissions have also been tested in order to assess the sensitivity of our model. Manure pH is the parameter to which modeled emissions are the most sensitive, with a 10 % change in emissions per percent change in pH. Even though we found an underestimation in our emissions over Europe (−26 %) and an overestimation in the USA (+56 %) compared with previous work, other hot spot regions are consistent. The calculated emission seasonality is in very good agreement with satellite-based emissions. These encouraging results prove the potential of coupling ORCHIDEE land-based emissions to CTMs, which are currently forced by bottom-up anthropogenic-centered inventories such as the CEDS (Community Emissions Data System).
2023
2023
Marine mammals are considered sentinel species and may act as indicators of ocean health. Plastic residues are widely distributed in the oceans and are recognised as hazardous contaminants, and once ingested can cause several adverse effects on wildlife. This study aimed to identify and characterise plastic ingestion in the Guiana dolphins (Sotalia guianensis) from the Southwestern Tropical Atlantic by evaluating the stomach contents of stranded individuals through KOH digestion and identification of subsample of particles by LDIR Chemical Imaging System. Most of the individuals were contaminated, and the most common polymers identified were PU, PET and EVA. Microplastics were more prevalent than larger plastic particles (meso- and macroplastics). Smaller particles were detected during the rainy seasons. Moreover, there was a positive correlation between the stomach content mass and the number of microplastics, suggesting contamination through trophic transfer.
2023
Fine-resolution spatio-temporal maps of near-surface urban air temperature (Ta) provide crucial data inputs for sustainable urban decision-making, personal heat exposure, and climate-relevant epidemiological studies. The recent availability of IoT weather station data allows for high-resolution urban Ta mapping using approaches such as interpolation techniques or machine learning (ML). This study is aimed at executing these approaches and traditional numerical modeling within a practical and operational framework and evaluate their practicality and efficiency in cases where data availability, computational constraints, or specialized expertise pose challenges. We employ Netatmo crowd-sourced weather station data and three geospatial mapping approaches: (1) Ordinary Kriging, (2) statistical ML model (using predictors primarily derived from Earth Observation Data), and (3) weather research and forecasting model (WRF) to predict/map daily Ta at nearly 1-km spatial resolution in Warsaw (Poland) for June–September and compare the predictions against observations from 5 meteorological reference stations. The results reveal that ML can serve as a viable alternative approach to traditional kriging and numerical simulation, characterized by reduced complexity and higher computational speeds within the domain of urban meteorological studies (overall RMSE = 1.06 °C and R2 = 0.94, compared to ground-based meteorological stations). The results have implications for identifying the urban regions vulnerable to overheating and evidence-based urban management in response to climate change. Due to the open-sourced nature of the applied predictors and input parsimony, the ML method can be easily replicated for other EU cities.
2023
Legacy perfluoroalkyl acids and their oxidizable precursors in plasma samples of Norwegian women
Humans are exposed to perfluoroalkyl acids (PFAA) mainly through direct pathways, such as diet and drinking water, but indirect exposure also occurs when PFAA precursors break down to form legacy PFAA. Exposure to PFAA precursors raises particular concern, as neither the exposure nor the precursors themselves have been well described. In the present study, we aimed to assess the indirect contribution of oxidizable PFAA precursors to the total per- and polyfluoroalkyl substances (PFAS) burden in human plasma following the voluntary phase-out of production of long-chain PFAS. In addition, multiple logistic regression was used to explore associations between selected lifestyle and dietary factors and the oxidizable PFAA precursors fraction. This study included 302 cancer-free participants of the Norwegian Women and Cancer postgenome cohort. PFAS analyses were performed in plasma samples to determine PFAS concentrations before and after oxidation with the Total Oxidizable Precursor (TOP) assay. In pre-TOP analyses, perfluorooctane sulfonic acid (PFOS) was the dominant compound, followed by perfluorooctanoic acid (PFOA).The vast majority (98%) of the study population had increased post-TOP concentrations for at least one PFAA. The formation of PFAA accounted for 12% of the total PFAS burden, with seven PFAA observed post-TOP in at least 30% of study participants. PFHpA, br- PFOA, and PFDA were only detected in post-TOP analyses and showed the highest increase in concentrations. Of the PFAA with increased concentrations, we noted significant associations for year of birth, parity, BMI, and some dietary factors, although they were not consistent between the different PFAA. These results indicate that while the TOP assay might not provide a complete assessment of total PFAS burden in humans, it offers comprehensive assessment of unknown PFAA precursors that might be present in plasma, and it could therefore be implemented as an auxiliary tool in this regard.
2023
Integrating Solar Energy and Nature-Based Solutions for Climate-Neutral Urban Environments
This study focuses on achieving climate neutrality in European cities by integrating solar energy technologies and nature-based solutions. Through an examination of current practices, emerging trends, and case examples, the study explores the benefits, challenges, and prospects associated with this integration in urban contexts. A pioneering approach is presented to assess the urban heat and climate change mitigation benefits of combining building-integrated photovoltaics and nature-based solutions within the European context. The results highlight the synergistic relationship between nature-based components and solar conversion technology, identifying effective combinations for different climatic zones. In Southern Europe, strategies such as rooftop photovoltaics on cool roofs, photovoltaic shadings, green walls, and urban trees have demonstrated effectiveness in warmer regions. Conversely, mid- and high-latitude European cities have seen positive impacts through the integration of rooftop photovoltaics and photovoltaic facades with green roofs and green spaces. As solar cell conversion efficiency improves, the environmental impact of photovoltaics is expected to decrease, facilitating their integration into urban environments. The study emphasizes the importance of incorporating water bodies, cool pavements, spaces with high sky-view factors, and effective planning in urban design to maximize resilience benefits. Additionally, the study highlights the significance of prioritizing mitigation actions in low-income regions and engaging citizens in the development of social photovoltaics-positive energy houses, resilient neighbourhoods, and green spaces. By adopting these recommendations, European cities can create climate-neutral urban environments that prioritize clean energy, nature-based solutions, and the overall wellbeing of residents. The findings underscore the need for a multidisciplinary approach combining technological innovation, urban planning strategies, and policy frameworks to effectively achieve climate neutrality.
2023
Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.
2023
The impact of moisture transport and sources on precipitation stable isotopes (δ18O and d-excess) in the central Himalayas are crucial to understanding the climatic archives. However, this is still unclear due to the lack of in-situ observations. Here we present measurements of stable isotopes in precipitation at two stations (Yadong and Pali) in the central Himalayas during 2014–2015. Combined with simulations from the dispersion model FLEXPART, we investigate effects on precipitation stable isotopes related to changes in moisture sources and convections in the region, and possible influence by El Niño. Our results suggest that the moisture supplies related to evaporation over northeastern India and moisture losses related to convective activities over the Bay of Bengal (BoB) and Bangladesh region play important roles in changes in δ18O and d-excess in precipitation in the Yadong Valley. Outgoing longwave radiation and moisture flux divergence analysis further confirm that the contribution from continental evaporation dominates the moisture supply in the central Himalayas with a lesser contribution from convection over the BoB during the 2015 monsoon season compared with 2014. A change in the altitude effect is observed in 2015, which is more significant than the temperature and precipitation amount effect during the observation period. These findings provide valuable insights into climatic interpretations of paleo-isotopic archives with an isotopic response to changes in moisture transport to the central Himalayas.
2023
Leveraging opportunity of low carbon transition by super-emitter cities in China
Chinese cities are core in the national carbon mitigation and largely affect global decarbonisation initiatives, yet disparities between cities challenge country-wide progress. Low-carbon transition should preferably lead to a convergence of both equity and mitigation targets among cities. Inter-city supply chains that link the production and consumption of cities are a factor in shaping inequality and mitigation but less considered aggregately. Here, we modelled supply chains of 309 Chinese cities for 2012 to quantify carbon footprint inequality, as well as explored a leverage opportunity to achieve an inclusive low-carbon transition. We revealed significant carbon inequalities: the 10 richest cities in China have per capita carbon footprints comparable to the US level, while half of the Chinese cities sit below the global average. Inter-city supply chains in China, which are associated with 80% of carbon emissions, imply substantial carbon leakage risks and also contribute to socioeconomic disparities. However, the significant carbon inequality implies a leveraging opportunity that substantial mitigation can be achieved by 32 super-emitting cities. If the super-emitting cities adopt their differentiated mitigation pathway based on affluence, industrial structure, and role of supply chains, up to 1.4 Gt carbon quota can be created, raising 30% of the projected carbon quota to carbon peak. The additional carbon quota allows the average living standard of the other 60% of Chinese people to reach an upper-middle-income level, highlighting collaborative mechanism at the city level has a great potential to lead to a convergence of both equity and mitigation targets.
2023