Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2698 publications. Showing page 35 of 270:

Publication  
Year  
Category

Spatial distribution of Dechlorane Plus and dechlorane related compounds in European background air

Skogeng, Lovise Pedersen; Halvorsen, Helene Lunder; Breivik, Knut; Eckhardt, Sabine; Herzke, Dorte; Möckel, Claudia; Krogseth, Ingjerd Sunde

The highly chlorinated chemical Dechlorane Plus (DP) was introduced as a replacement flame retardant for Mirex, which is banned through the Stockholm Convention (SC) for its toxicity (T), environmental persistence (P), potential for bioaccumulation (B) and long-range environmental transport potential (LRETP). Currently, Dechlorane Plus is under consideration for listing under the Stockholm Convention and by the European Chemical Agency as it is suspected to also have potential for P, B, T and LRET. Knowledge of atmospheric concentrations of chemicals in background regions is vital to understand their persistence and long-range atmospheric transport but such knowledge is still limited for Dechlorane Plus. Also, knowledge on environmental occurrence of the less described Dechlorane Related Compounds (DRCs), with similar properties and uses as Dechlorane Plus, is limited. Hence, the main objective of this study was to carry out a spatial mapping of atmospheric concentrations of Dechlorane Plus and Dechlorane Related Compounds at background sites in Europe. Polyurethane foam passive air samplers were deployed at 99 sites across 33 European countries for 3 months in summer 2016 and analyzed for dechloranes. The study showed that syn- and anti-DP are present across the European continent...

2023

Analysis of nitro- and oxy-PAH emissions from a pilot scale silicon process with flue gas recirculation

Arnesen, Kamilla; Andersen, Vegar; Jakovljevic, Katarina; Enge, Ellen Katrin; Gaertner, Heiko; Aarhaug, Thor Anders; Einarsrud, Kristian Etienne; Tranell, Maria Gabriella

Silicon alloys are produced by carbothermic reduction of quartz in a submerged arc furnace. This high-temperature pyrolytic process is a source of polycyclic aromatic hydrocarbons (PAHs), which are a group of aromatic organic molecules with known mutagenic and carcinogenic properties. In this study, the emission of oxy- and nitro-PAHs from a pilot-scale Si furnace, with varying process conditions such as oxygen level, flue gas recirculation (FGR), and off-gas flow, was investigated. Analysis shows the presence of both oxy- and nitro-PAH species in all experiments, believed to be formed from radical-induced substitution reactions initiated by SiO combustion and NOx formation. During Si production without FGR, the levels of oxy- and nitro-PAHs range between 1.1 and 4.4 μg Nm−3, independent of the flue gas flow rate. With increasing FGR (0–82.5%) and decreasing oxygen level (20.7–13.3%), the concentrations of both oxy- and nitro-PAHs increase to 36.6 and 65.9 μg Nm−3, respectively. When the levels of substituted PAHs increase, species such as 4-nitropyrene and 1,2-benzanthraquinone are in abundance compared to their parent PAHs. Experiments at lower flue gas flow (500 Nm3 h−1 versus 1000 Nm3 h−1) generally produce less substituted PAHs, as well as SiO2 particulate matter and NOx, where the latter two parameters have a 99% correlation in this study.

2023

Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival

Urbanova, Maria; Cihova, Marina; Buocikova, Verona; Slopovsky, Jan; Dubovan, Peter; Pindak, Daniel; Tomas, Miroslav; García-Bermejo, Laura; Rodríguez-Garrote, Mercedes; Earl, Julie; Kohl, Yvonne; Kataki, Agapi; Dusinska, Maria; Jr., Bruno Sainz; Smolkova, Bozena; Gabelova, Alena

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.

2023

Polybrominated diphenyl ethers in type 2 diabetes mellitus cases and controls: Repeated measurements prior to and after diagnosis

Charles, Dolley; Berg, Vivian; Nøst, Therese Haugdahl; Wilsgaard, Tom; Bergdahl, Ingvar A.; Huber, Sandra; Ayotte, Pierre; Averina, Maria; Sandanger, Torkjel M; Rylander, Karin Charlotta Maria

Background Previous studies have reported associations between certain persistent organic pollutants (POPs) and type 2 diabetes mellitus (T2DM). Polybrominated diphenyl ethers (PBDEs) are a class of POPs that are found in increasing concentrations in humans. Although obesity is a known risk factor for T2DM and PBDEs are fat-soluble, very few studies have investigated associations between PBDEs and T2DM. No longitudinal studies have assessed associations between repeated measurements of PBDE and T2DM in the same individuals and compared time trends of PBDEs in T2DM cases and controls. Objectives To investigate associations between pre- and post-diagnostic measurements of PBDEs and T2DM and to compare time trends of PBDEs in T2DM cases and controls. Methods Questionnaire data and serum samples from participants in the Tromsø Study were used to conduct a longitudinal nested case-control study among 116 T2DM cases and 139 controls. All included study participants had three pre-diagnostic blood samples (collected before T2DM diagnosis in cases), and up to two post-diagnostic samples after T2DM diagnosis. We used logistic regression models to investigate pre- and post-diagnostic associations between PBDEs and T2DM, and linear mixed-effect models to assess time trends of PBDEs in T2DM cases and controls. Results We observed no substantial pre- or post-diagnostic associations between any of the PBDEs and T2DM, except for BDE-154 at one of the post-diagnostic time-points (OR = 1.65, 95% CI: 1.00, 2.71). The overall time trends of PBDE concentrations were similar for cases and controls. Discussion The study did not support PBDEs increasing the odds of T2DM, prior to or after T2DM diagnosis. T2DM status did not influence the time trends of PBDE concentrations.

2023

SCCS scientific opinion on Butylated hydroxytoluene (BHT) - SCCS/1636/21

Granum, Berit; Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Ezendam, Janine; Gaffet, Eric; Galli, Corrado Lodovico; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Vanhaecke, Tamara; Wijnhoven, Susan; Koutsodimou, Aglaia; Uter, Wolfgang; Goetz, Natalie von

2023

SCCS scientific opinion on HAA299 (nano) - SCCS/1634/21

Galli, Corrado Lodovico; Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Ezendam, Janine; Gaffet, Eric; Granum, Berit; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Haecke, Tamara Van; Wijnhoven, Susan; Koutsodimou, Aglaia; Uter, Wolfgang; Goetz, Natalie von

2023

Antarctic sea-ice low resonates in the ecophysiology of humpback whales

Nash, Susan M. Bengtson; Groß, Jasmin; Castrillon, Juliana; Casa, Maria Valeria; Luche, Greta Dalle; Meager, Justin James; Ghosh, Ruma; Eggebo, June; Bohlin-Nizzetto, Pernilla

The past six years have been marked by some of the most dramatic climatic events observed in the Antarctic region in recent history, commencing with the 2017 sea-ice extreme low. The Humpback Whale Sentinel Programme is a circum-polar biomonitoring program for long term surveillance of the Antarctic sea-ice ecosystem. It has previously signalled the extreme La Niña event of 2010/11, and it was therefore of interest to assess the capacity of existing biomonitoring measures under the program to detect the impacts of 2017 anomalous climatic events. Six ecophysiological markers of population adiposity, diet, and fecundity were targeted, as well as calf and juvenile mortality via stranding records. All indicators, with the exception of bulk stable isotope dietary tracers, indicated a negative trend in 2017, whilst C and N bulk stable isotopes appeared to indicate a lag phase resulting from the anomalous year. The collation of multiple biochemical, chemical, and observational lines of evidence via a single biomonitoring platform provides comprehensive information for evidence-led policy in the Antarctic and Southern Ocean region.

2023

Citizen-operated mobile low-cost sensors for urban PM2.5 monitoring: field calibration, uncertainty estimation, and application

Hassani, Amirhossein; Castell, Nuria; Watne, Ågot K.; Schneider, Philipp

Research communities, engagement campaigns, and administrative agents are increasingly valuing low-cost air-quality monitoring technologies, despite data quality concerns. Mobile low-cost sensors have already been used for delivering a spatial representation of pollutant concentrations, though less attention is given to their uncertainty quantification. Here, we perform static/on-bike inter-comparison tests to assess the performance of the Snifferbike sensor kit in measuring outdoor PM2.5 (Particulate Matter < 2.5 μm). We build a network of citizen-operated Snifferbike sensors in Kristiansand, Norway, and calibrate the measurements using Machine Learning techniques to estimate the concentrations of PM2.5 along the city roads. We also propose a method to estimate the minimum number of PM2.5 measurements required per road segment to assure data representativeness. The co-location of three Snifferbike kits (Sensirion SPS30) at the monitoring station showed a RMSD of 7.55 μg m−3. We approximate that one km h−1 increase in the speed of the bikes will add 0.03 - 0.04 μg m−3 to the Standard Deviation of the Snifferbike PM2.5 measurements. We estimate that at least 27 measurements per road segment are required (50 m here) if the data are sufficiently dispersed over time. We recommend calibrating the mobile sensors when they coincide with reference monitoring stations.

2023

Global agricultural ammonia emissions simulated with the ORCHIDEE land surface mode

Beaudor, Maureen; Vuichard, Nicolas; Lathière, Juliette; Evangeliou, Nikolaos; Damme, Martin Van; Clarisse, Lieven; Hauglustaine, Didier

Ammonia (NH3) is an important atmospheric constituent. It plays a role in air quality and climate through the formation of ammonium sulfate and ammonium nitrate particles. It has also an impact on ecosystems through deposition processes. About 85 % of NH3 global anthropogenic emissions are related to food and feed production and, in particular, to the use of mineral fertilizers and manure management. Most global chemistry transport models (CTMs) rely on bottom-up emission inventories, which are subject to significant uncertainties. In this study, we estimate emissions from livestock by developing a new module to calculate ammonia emissions from the whole agricultural sector (from housing and storage to grazing and fertilizer application) within the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) global land surface model. We detail the approach used for quantifying livestock feed management, manure application, and indoor and soil emissions and subsequently evaluate the model performance. Our results reflect China, India, Africa, Latin America, the USA, and Europe as the main contributors to global NH3 emissions, accounting for 80 % of the total budget. The global calculated emissions reach 44 Tg N yr−1 over the 2005–2015 period, which is within the range estimated by previous work. Key parameters (e.g., the pH of the manure, timing of N application, and atmospheric NH3 surface concentration) that drive the soil emissions have also been tested in order to assess the sensitivity of our model. Manure pH is the parameter to which modeled emissions are the most sensitive, with a 10 % change in emissions per percent change in pH. Even though we found an underestimation in our emissions over Europe (−26 %) and an overestimation in the USA (+56 %) compared with previous work, other hot spot regions are consistent. The calculated emission seasonality is in very good agreement with satellite-based emissions. These encouraging results prove the potential of coupling ORCHIDEE land-based emissions to CTMs, which are currently forced by bottom-up anthropogenic-centered inventories such as the CEDS (Community Emissions Data System).

2023

SCCS Scientific Opinion on Acid Yellow 3 (submission II) – SCCS/1631/21

Galli, Corrado Lodovico; Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Ezendam, Janine; Granum, Berit; Gaffet, Eric; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Vanhaecke, Tamara; Wijnhoven, Susan; Koutsodimou, Aglaia; Uter, Wolfgang; Goetz, Natalie von

2023

Publication
Year
Category