Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2713 publications. Showing page 42 of 272:

Publication  
Year  
Category

Disentangling Aerosol and Cloud effects on Dimming and Brightening in Observations and CMIP6

Julsrud, Ingeborg Rian; Storelvmo, Trude; Schulz, Michael; Moseid, Kine Onsum; Wild, Martin

Periods of dimming and brightening have been recorded in observational datasets of surface solar radiation (SSR) between the mid-20th century and present day. Atmospheric components affect SSR, including aerosols and clouds, though studies disagree somewhat about the relative effect of each component in different regions. Current Earth system models (ESMs) are unable to simulate observed trends in SSR. This study includes an investigation into observed SSR variations between 1961 and 2014 and an evaluation of the effects of cloud cover variations and impacts of aerosol extinction, using timeseries of SSR and cloud cover from in-situ measurements. Historical simulations by 42 ESMs participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) have also been studied and compared to observations. The observational study indicates that cloud cover has had a dampening effect on the variations of SSR and that emissions of aerosol and aerosol precursors are the main cause of the general trends in observed SSR in four regions—China, Japan, Europe and the United States—during 1961-2014. The study of simulated SSR in CMIP6 yields the conclusion that current ESMs remain unable to simulate the magnitude of observed dimming and brightening in China, Japan and the United States, but that the European SSR trends between 1961 and 2014 are fairly well reproduced in the ESMs. A rough quantification of the regional surface radiation extinction efficiency of aerosol and precursor emissions in the simulations is found to agree with observed values in Europe, but not in the other three regions.

2022

Expectations of Future Natural Hazards in Human Adaptation to Concurrent Extreme Events in the Colorado River Basin

Boero, Riccardo; Talsma, Carl James; Oliveto, Julia Andre; Bennet, Katrina Eleanor

Human adaptation to climate change is the outcome of long-term decisions continuously made and revised by local communities. Adaptation choices can be represented by economic investment models in which the often large upfront cost of adaptation is offset by the future benefits of avoiding losses due to future natural hazards. In this context, we investigate the role that expectations of future natural hazards have on adaptation in the Colorado River basin of the USA. We apply an innovative approach that quantifies the impacts of changes in concurrent climate extremes, with a focus on flooding events. By including the expectation of future natural hazards in adaptation models, we examine how public policies can focus on this component to support local community adaptation efforts. Findings indicate that considering the concurrent distribution of several variables makes quantification and prediction of extremes easier, more realistic, and consequently improves our capability to model human systems adaptation. Hazard expectation is a leading force in adaptation. Even without assuming increases in exposure, the Colorado River basin is expected to face harsh increases in damage from flooding events unless local communities are able to incorporate climate change and expected increases in extremes in their adaptation planning and decision making.

2022

The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

Taha, Hiba Mohammed; Aalizadeh, Reza; Alygizakis, Nikiforos; Antignac, Jean-Philippe; Arp, Hans Peter; Bade, Richard; Baker, Nancy; Belova, Lidia; Bijlsma, Lubertus; Bolton, Evan E.; Brack, Werner; Celma, Alberto; Chen, Wen-Ling; Cheng, Tiejun; Chirsir, Parviel; Čirka, Ľuboš; D’Agostino, Lisa A.; Feunang, Yannick Djoumbou; Dulio, Valeria; Fischer, Stellan; Gago-Ferrero, Pablo; Galani, Aikaterini; Geueke, Birgit; Głowacka, Natalia; Glüge, Juliane; Groh, Ksenia; Grosse, Sylvia; Haglund, Peter; Hakkinen, Pertti J.; Hale, Sarah; Hernandez, Felix; Janssen, Elisabeth M.-L.; Jonkers, Tim; Kiefer, Karin; Kirchner, Michal; Koschorreck, Jan; Krauss, Martin; Krier, Jessy; Lamoree, Marja H.; Letzel, Marion; Letzel, Thomas; Li, Qingliang; Little, James; Liu, Yanna; Lunderberg, David M.; Martin, Jonathan W.; McEachran, Andrew D.; McLean, John A.; Meier, Christiane; Meijer, Jeroen; Menger, Frank; Merino, Carla; Muncke, Jane; Muschket, Matthias; Neumann, Michael; Neveu, Vanessa; Ng, Kelsey; Oberacher, Herbert; O’Brien, Jake; Oswald, Peter; Oswaldova, Martina; Picache, Jaqueline A.; Postigo, Cristina; Ramirez, Noelia; Reemtsma, Thorsten; Renaud, Justin; Rostkowski, Pawel; Rüdel, Heinz; Salek, Reza M.; Samanipour, Saer; Scheringer, Martin; Schliebner, Ivo; Schulz, Wolfgang; Schulze, Tobias; Sengl, Manfred; Shoemaker, Benjamin A.; Sims, Kerry; Singer, Heinz; Singh, Randolph R.; Sumarah, Mark; Thiessen, Paul A.; Thomas, Kevin V; Torres, Sonia; Trier, Xenia; Wezel, Annemarie P. van; Vermeulen, Roel C. H.; Vlaanderen, Jelle J.; Ohe, Peter C. von der; Wang, Zhanyun; Williams, Antony J.; Willighagen, Egon L.; Wishart, David S.; Zhang, Jian; Thomaidis, Nikolaos S.; Hollender, Juliane; Slobodnik, Jaroslav; Schymanski, Emma L.

Background

The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.

Results

The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).

Conclusions

The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).

2022

What caused a record high PM10 episode in northern Europe in October 2020?

Zwaaftink, Christine Groot; Aas, Wenche; Eckhardt, Sabine; Evangeliou, Nikolaos; Hamer, Paul David; Johnsrud, Mona; Kylling, Arve; Platt, Stephen Matthew; Stebel, Kerstin; Uggerud, Hilde Thelle; Yttri, Karl Espen

In early October 2020, northern Europe experienced an episode with poor air quality due to high concentrations of particulate matter (PM). At several sites in Norway, recorded weekly values exceeded historical maximum PM10 concentrations from the past 4 to 10 years. Daily mean PM10 values at Norwegian sites were up to 97 µg m−3 and had a median value of 59 µg m−3. We analysed this severe pollution episode caused by long-range atmospheric transport based on surface and remote sensing observations and transport model simulations to understand its causes. Samples from three sites in mainland Norway and the Arctic remote station Zeppelin (Svalbard) showed strong contributions from mineral dust to PM10 (23 %–36 % as a minimum and 31 %–45 % as a maximum) and biomass burning (8 %–16 % to 19 %–21 %). Atmospheric transport simulations indicate that Central Asia was the main source region for mineral dust observed in this episode. The biomass burning fraction can be attributed to forest fires in Ukraine and southern Russia, but we cannot exclude other sources contributing, like fires elsewhere, because the model underestimates observed concentrations. The combined use of remote sensing, surface measurements, and transport modelling proved effective in describing the episode and distinguishing its causes.

2022

Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models

Buociková, Verona; Longhin, Eleonora Marta; Pilalis, Eleftherios; Mastrokalou, Chara; Miklíková, Svetlana; Cihova, Marina; Poturnayova, Alexandra; Mackova, Katarina; Bábelová, Andrea; Trnkova, Lenka; Yamani, Naouale El; Zheng, Congying; Mondragon, Ivan Rios; Labudova, Martina; Csaderova, Lucia; Kuracinova, Kristina Mikus; Makovicky, Peter; Kučerová, Lucia; Matuskova, Miroslava; Cimpan, Mihaela-Roxana; Dusinska, Maria; Babal, Pavel; Chatziioannou, Aristotelis; Gábelová, Alena; Rundén-Pran, Elise; Smolkova, Bozena

Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy.

2022

Modified Target Diagram to check compliance of low-cost sensors with the Data Quality Objectives of the European air quality directive

Yatkin, Sinan; Gerboles, Michel; Borowiak, Annette; Davila, Silvije; Spinelle, Laurent; Bartonova, Alena; Dauge, Franck Rene; Schneider, Philipp; Poppel, Martine Van; Peters, Jan; Matheeussen, Christina; Signorini, Marco

The modified Target Diagram (MTD) was developed to evaluate the performance of low-cost sensors (LCS) for air quality monitoring in comparison with reference methods by reporting relative expanded uncertainty and its contributors. An MTD provides several pieces of information, including compliance with regulation, sources of error and how to diminish them, completeness and validity of LCS calibration etc. It allows the user to examine the effect of selecting different regression types and residual fitting on the LCS measurement uncertainty. The ordinary least squared regression with fitted residuals and dynamic between reference analyser uncertainty rather than constant ones yielded more realistic LCS measurement uncertainty compared to other options. The MTD is a fast visual tool to extract several pieces of information on evaluation of any candidate method against reference method.

2022

Plastic ingestion and associated additives in Faroe Islands chicks of the Northern Fulmar Fulmarus glacialis

Collard, France; Leconte, Simon; Danielsen, Jóhannis; Halsband, Claudia; Herzke, Dorte; Harju, Mikael; Tulatz, Felix; Gabrielsen, Geir Wing; Tarroux, Arnaud

Northern Fulmars (Fulmarus glacialis) are a pelagic seabird species distributed at northern and polar latitudes. They are often used as an indicator of plastic pollution in the North Sea region, but data are lacking from higher latitudes, especially when it comes to chicks. Here, we investigated amounts of ingested plastic and their characteristics in fulmar chicks from the Faroe Islands. Plastic particles (≥1 ​mm) in chicks of two age classes were searched using a digestion method with KOH. In addition, to evaluate if additive tissue burden reflects plastic ingestion, we measured liver tissue concentrations of two pollutant classes associated with plastic materials: polybrominated diphenyl ethers (PBDEs) and several dechloranes, using gas chromatography with high-resolution mass spectrometry. The most common shape was hard fragment (81%) and the most common polymer was polyethylene (73%). Plastic contamination did not differ between either age class, and we found no correlation between neither the amount and mass of plastic particles and the concentration of additives. After comparison with previous studies on adult fulmars, we do not recommend using chicks for biomonitoring adults because chicks seem to ingest more plastics than adults.

2022

Plastic burdens in northern fulmars from Svalbard: looking back 25 years

Collard, France; Bangjord, Georg; Herzke, Dorte; Gabrielsen, Geir Wing

The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard. An extraction protocol with KOH was used and for half of the birds, the gizzard and the proventricular contents were analysed separately. Ninety-one percent of the birds had ingested at least one piece of plastic with an average of 10.3 (±11.9 SD) pieces. The gizzards contained significantly more plastics than the proventriculus. Hard fragments and polyethylene were the most common characteristics. Twelve percent of the birds exceeded the EcoQO value of 0.1 g.

2022

Abrupt Change in the Lower Thermospheric Mean Meridional Circulation During Sudden Stratospheric Warmings and Its Impact on Trace Species

Orsolini, Yvan J.; Zhang, Jiarong; Limpasuvan, Varavut

Based on the hourly output from the 2000–2014 simulations of the National Center for Atmospheric Research's vertically extended version of the Whole Atmosphere Community Climate Model in specified dynamics configuration, we examine the roles of planetary waves (PWs), gravity waves, and atmospheric tides in driving the mean meridional circulation (MMC) in the lower thermosphere (LT) and its response to the sudden stratospheric warming phenomenon with an elevated stratopause in the northern hemisphere. Sandwiched between the two summer-to-winter overturning circulations in the mesosphere and the upper thermosphere, the climatological LT MMC is a narrow gyre that is characterized by upwelling in the middle winter latitudes, equatorward flow near 120 km, and downwelling in the middle and high summer latitudes. Following the onset of the sudden stratospheric warmings, this gyre reverses its climatological direction, resulting in a “chimney-like” feature of un-interrupted polar descent from the altitude of 150 km down to the upper mesosphere. This reversal is driven by the westward-propagating PWs, which exert a brief but significant westward forcing between 70 and 125 km, exceeding gravity wave and tidal forcings in that altitude range. The attendant polar descent potentially leads to a short-lived enhanced transport of nitric oxide into the mesosphere (with excess in the order of 1 parts per million), while carbon dioxide is decreased.

2022

High-Resolution Emissions from Wood Burning in Norway—The Effect of Cabin Emissions

Lopez-Aparicio, Susana; Grythe, Henrik; Markelj, Miha

Emissions from wood burning for heating in secondary homes or cabins is an important part in the development of high-resolution emissions in specific areas. Norway is used as case study as 20% of the national wood consumption for heating occurs in cabins. Our study first shows a method to estimate emissions from cabins based on traffic data to derive cabin occupancy, which combined with heating need allows for the spatial and temporal distribution of emissions. The combination of residential (RWC) and cabin wood combustion (CWC) emissions shows large spatial and temporal differences, and a temporally “cabin population” can in areas be orders of magnitude larger than the registered population. While RWC emissions have been steadily reduced, CWC have kept relatively constant or even increased, which results in an increase in the cabin share to total heating emissions up to 25–35%. When comparing with regional emission inventories, our study shows that the gradient between rural and urban areas is not well-represented in regional inventories, which resembles a population-based distribution and does not allocate emissions in cabin municipalities. CWC emissions may become an increasing environmental concern as higher densification trends in mountain areas are observed.

2022

Publication
Year
Category