Found 2670 publications. Showing page 51 of 267:
We synthesized N2O emissions over North America using 17 bottom-up (BU) estimates from 1980–2016 and five top-down (TD) estimates from 1998 to 2016. The BU-based total emission shows a slight increase owing to U.S. agriculture, while no consistent trend is shown in TD estimates. During 2007–2016, North American N2O emissions are estimated at 1.7 (1.0–3.0) Tg N yr−1 (BU) and 1.3 (0.9–1.5) Tg N yr−1 (TD). Anthropogenic emissions were twice as large as natural fluxes from soil and water. Direct agricultural and industrial activities accounted for 68% of total anthropogenic emissions, 71% of which was contributed by the U.S. Our estimates of U.S. agricultural emissions are comparable to the EPA greenhouse gas (GHG) inventory, which includes estimates from IPCC tier 1 (emission factor) and tier 3 (process-based modeling) approaches. Conversely, our estimated agricultural emissions for Canada and Mexico are twice as large as the respective national GHG inventories.
2021
The rise of advanced ICT technologies has made it possible to apply low-cost sensor systems for measuring air quality in citizen science projects, including education. High school students in Norway used these sensor systems in a citizen science project to design, carry out, and evaluate their own research projects on air quality. An impact assessment framework was designed to assess the impact of these activities, considering five areas of impact: scientific, social, economic, political, and environmental. In addition, the framework also considers the transformative potential of the citizen science pilot, i.e., the degree to which the pilot can help to change, alter, or replace current systems, and the business-as-usual in one or more fields such as knowledge production or environmental protection. Data for this assessment were gathered in the form of questionnaires that the students had to complete before starting and after finalizing the pilot activities. The results showed positive impacts on learning, a pro-environmental world view, and an increase in pro-science attitudes and interest in scientific and environmental-related topics at the end of the pilot activities. Only weak impacts were measured for behavioral change. The activities showed transformative potential, which makes the student activities an example of good practice for citizen science activities on air quality with low-cost sensors.
2021
The Arctic middle atmosphere was affected by major sudden stratospheric warmings (SSW) in February 2018 and January 2019, respectively. In this article, we report for the first time the impact of these two events on the middle atmospheric nitric oxide (NO) abundance. The study is based on measurements obtained during two dedicated observation campaigns, using the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite, measuring NO globally since 2003. The SSW of February 2018 was similar to other, more dynamically quiet, Arctic winters in term of NO downward transport from the upper mesosphere–lower thermosphere to lower altitudes (referred to as energetic particle precipitation indirect effect EPP-IE). On the contrary, the event of January 2019 led to one of the strongest EPP-IE cases observed within the Odin operational period. Important positive NO anomalies were indeed observed in the lower mesosphere–upper stratosphere during the three months following the SSW onset, corresponding to NO volume mixing ratios more than 50 times higher than the climatological values. These different consequences on the middle atmospheric composition are explained by very different dynamical characteristics of these two SSW events.
2021
2021
Long-term monitoring of regulated organic chemicals, such as legacy persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), in ambient air provides valuable information about the compounds' environmental fate as well as temporal and spatial trends. This is the foundation to evaluate the effectiveness of national and international regulations for priority pollutants. Extracts of high-volume air samples, collected on glass fibre filters (GFF for particle phase) and polyurethane foam plugs (PUF for gaseous phase), for targeted analyses of legacy POPs are commonly cleaned by treatment with concentrated sulfuric acid, resulting in extracts clean from most interfering compounds and matrices that are suitable for multi-quantitative trace analysis. Such standardised methods, however, severely restrict the number of analytes for quantification and are not applicable when targeting new and emerging compounds as some may be less stable under acid treatment. Recently developed suspect and non-target screening analytical strategies (SUS and NTS, respectively) are shown to be effective evaluation tools aimed at identifying a high number of compounds of emerging concern. These strategies, combining highly sophisticated analytical technology with extensive data interpretation and statistics, are already widely accepted in environmental sciences for investigations of various environmental matrices, but their application to air samples is still very limited. In order to apply SUS and NTS for the identification of organic contaminants in air samples, an adapted and more wide-scope sample clean-up method is needed compared to the traditional method, which uses concentrated sulfuric acid. Analysis of raw air sample extracts without clean-up would generate extensive contamination of the analytical system, especially with PUF matrix-based compounds, and thus highly interfered mass spectra and detection limits which are unacceptable high for trace analysis in air samples.
In this study, a novel wide-scope sample clean-up method for high-volume air samples has been developed and applied to real high-volume air samples, which facilitates simultaneous target, suspect and non-target analyses. The scope and efficiency of the method were quantitatively evaluated with organic compounds covering a wide range of polarities (logP 2–11), including legacy POPs, brominated flame retardants (BFRs), chlorinated pesticides and currently used pesticides (CUPs). In addition, data reduction and selection strategies for SUS and NTS were developed for comprehensive two-dimensional gas chromatography separation with low-resolution time-of-flight mass spectrometric detection (GC × GC-LRMS) data and applied to real high-volume air samples. Combination of the newly developed clean-up procedure and data treatment strategy enabled the prioritisation of over 600 compounds of interest in the particle phase (on GFF) and over 850 compounds in the gas phase (on PUF) out of over 25 000 chemical features detected in the raw dataset. Of these, 50 individual compounds were identified and confirmed with reference standards, 80 compounds were identified with a probable structure, and 774 compounds were assigned to various compound classes. In the dataset available here, 11 hitherto unknown halogenated compounds were detected. These unknown compounds were not yet listed in the available mass spectral libraries.
2021
Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons
Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b (CH2ClCClF2), which is newly discovered in the atmosphere, and updated results for HCFC-133a (CH2ClCF3) and HCFC-31 (CH2ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y−1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016–2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y−1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y−1. Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.
2021
There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.
2021
BACKGROUND. Methodology for estimation of cerebrospinal fluid (CSF) tracer clearance could have wide clinical application in predicting excretion of intrathecal drugs and metabolic solutes from brain metabolism and for diagnostic workup of CSF disturbances. METHODS. The MRI contrast agent gadobutrol (Gadovist) was used as a CSF tracer and injected into the lumbar CSF. Gadobutrol is contained outside blood vessels of the CNS and is eliminated along extravascular pathways, analogous to many CNS metabolites and intrathecal drugs. Tracer enrichment was verified and assessed in CSF by MRI at the level of the cisterna magna in parallel with obtaining blood samples through 48 hours. RESULTS. In a reference patient cohort (n = 29), both enrichment within CSF and blood coincided in time. Blood concentration profiles of gadobutrol through 48 hours varied between patients diagnosed with CSF leakage (n = 4), idiopathic normal pressure hydrocephalus dementia (n = 7), pineal cysts (n = 8), and idiopathic intracranial hypertension (n = 4). CONCLUSION. Assessment of CSF tracer clearance is clinically feasible and may provide a way to predict extravascular clearance of intrathecal drugs and endogenous metabolites from the CNS. The peak concentration in blood (at about 10 hours) was preceded by far peak tracer enhancement at MRI in extracranial lymphatic structures (at about 24 hours), as shown in previous studies, indicating a major role of the spinal canal in CSF clearance capacity. FUNDING. The work was supported by the Department of Neurosurgery, Oslo University Hospital; the Norwegian Institute for Air Research; and the University of Oslo.
2021
Seasonal to interannual variations in the concentrations of sulfur aerosols (< 2.5 µm in diameter; non sea-salt sulfate: NSS-SO2−4; anthropogenic sulfate: Anth-SO2−4; biogenic sulfate: Bio-SO2−4; methanesulfonic acid: MSA) in the Arctic atmosphere were investigated using measurements of the chemical composition of aerosols collected at Ny-Ålesund, Svalbard (78.9∘ N, 11.9∘ E) from 2015 to 2019. In all measurement years the concentration of NSS-SO2−4 was highest during the pre-bloom period and rapidly decreased towards summer. During the pre-bloom period we found a strong correlation between NSS-SO2−4 (sum of Anth-SO2−4 and Bio-SO2−4) and Anth-SO2−4. This was because more than 50 % of the NSS-SO2−4 measured during this period was Anth-SO2−4, which originated in northern Europe and was subsequently transported to the Arctic in Arctic haze. Unexpected increases in the concentration of Bio-SO2−4 aerosols (an oxidation product of dimethylsulfide: DMS) were occasionally found during the pre-bloom period. These probably originated in regions to the south (the North Atlantic Ocean and the Norwegian Sea) rather than in ocean areas in the proximity of Ny-Ålesund. Another oxidation product of DMS is MSA, and the ratio of MSA to Bio-SO2−4 is extensively used to estimate the total amount of DMS-derived aerosol particles in remote marine environments. The concentration of MSA during the pre-bloom period remained low, primarily because of the greater loss of MSA relative to Bio-SO2−4 and the suppression of condensation of gaseous MSA onto particles already present in air masses being transported northwards from distant ocean source regions (existing particles). In addition, the low light intensity during the pre-bloom period resulted in a low concentration of photochemically activated oxidant species including OH radicals and BrO; these conditions favored the oxidation pathway of DMS to Bio-SO2−4 rather than to MSA, which acted to lower the MSA concentration at Ny-Ålesund. The concentration of MSA peaked in May or June and was positively correlated with phytoplankton biomass in the Greenland and Barents seas around Svalbard. As a result, the mean ratio of MSA to the DMS-derived aerosols was low (0.09 ± 0.07) in the pre-bloom period but high (0.32 ± 0.15) in the bloom and post-bloom periods. There was large interannual variability in the ratio of MSA to Bio-SO2−4 (i.e., 0.24 ± 0.11 in 2017, 0.40 ± 0.14 in 2018, and 0.36 ± 0.14 in 2019) during the bloom and post-bloom periods. This was probably associated with changes in the chemical properties of existing particles, biological activities surrounding the observation site, and air mass transport patterns. Our results indicate that MSA is not a conservative tracer for predicting DMS-derived particles, and the contribution of MSA to the growth of newly formed particles may be much larger during the bloom and post-bloom periods than during the pre-bloom period.
2021
Elevated stratopause events in the current and a future climate: A chemistry-climate model study
The characteristics and driving mechanisms of Elevated Stratopause Events (ESEs) are examined in simulations of the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model under present and projected climate conditions. ESEs develop after sudden stratospheric warmings (SSWs) in boreal winter. While the stratopause descends during SSWs, it is reformed at higher altitudes after the SSWs, leading to ESEs in years with a particularly high new stratopause. EMAC reproduces well the frequency and main characteristics of observed ESEs. ESEs occur in 24% of the winters, mostly after major SSWs. They develop in stable polar vortices due to a persistent tropospheric wave forcing leading to a prolonged zonal wind reversal in the lower stratosphere. By wave filtering, this enables a faster re-establishment of the mesospheric westerly jet, polar downwelling and a higher stratopause. We find the presence of a westward-propagating wavenumber-1 planetary wave in the mesosphere following the onset, consistent with in-situ generation by large-scale instability. By the end of the 21st century, the number of ESEs is projected to increase, mainly due to a sinking of the original stratopause after strong tropospheric wave forcing and planetary wave dissipation at lower levels. Future ESEs develop preferably in more intense and cold polar vortices, and tend to be shorter. While in the current climate, planetary wavenumber-2 contributes to the forcing of ESEs, future wave forcing is dominated by wavenumber-1 activity as a result of climate change. Hence, a persistent wave forcing seems to be more relevant for the development of an ESE than the wavenumber decomposition of the forcing.
2021