Found 2670 publications. Showing page 52 of 267:
A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH+4, NO−3, SO2−4, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories.
The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO2−4 and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO2−4 concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH+4, and NO−3 were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH+4 and NO−3 aerosol. In the aerosol phase, NH+4 was highly correlated with both NO−3 and SO2−4, with a near-1:1 relationship between the equivalent concentrations of NH+4 and sum (NO−3+ SO2−4),of which around 60 % was as NH4NO3.
Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except in southern Europe, where the peak occurred in summer. Particulate SO2−4 showed large peaks in concentrations in summer in southern and eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO2−4 coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH+4 and NO−3. The seasonal profile of NO−3 was mirrored by NH+4, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components.
Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx, and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate...
2021
An optimized low volume sampler was developed to determine both gas- and particle bound concentrations of short and medium-chain chlorinated paraffins (S/MCCPs). Background contamination was limited by the sampler design, providing method quantification limits (MQLs) at least two orders of magnitude lower than other studies within the gas (MQL: 500 pg (ΣSCCPs), 1.86 ng (ΣMCCPs)) and particle (MQL: 500 pg (ΣSCCPs), 1.72 ng (ΣMCCPs) phases. Good repeatability was observed between parallel indoor measurements (RSD ≤ 9.3% (gas), RSD ≤ 14% (particle)) with no breakthrough/saturation observed after a week of continuous sampling. For indoor air sampling, SCCPs were dominant within the gas phase (17 ± 4.9 ng/m3) compared to MCCPs (2.7 ± 0.8 ng/m3) while the opposite was observed in the particle bound fraction (0.28 ± 0.11 ng/m3 (ΣSCCPs) vs. 2.7 ± 1.0 ng/m3 (ΣMCCPs)). Only SCCPs in the gas phase could be detected reliably during outdoor sampling and were considerably lower compared to indoor concentrations (0.27 ± 0.10 ng/m3). Separation of the gas and particle bound phase was found to be crucial in applying the appropriate response factors for quantification based on the deconvoluted S/MCCP sample profile, thus avoiding over- (gas phase) or underestimation (particle phase) of reported concentrations. Very short chain chlorinated paraffins (vSCCPs, C5-C9) were also detected at equal or higher abundance compared to SCCP congener groups (C10-C13) congener groups, indicating an additional human indoor inhalation risk.
2021
Although it has been suggested that plastic may act as a vector for pollutants into the tissue of seabirds, the bioaccumulation of harmful contaminants, such as polybrominated diphenyl ethers (PBDEs), released from ingested plastics is poorly understood. Plastic ingestion by the procellariiform species northern fulmar (Fulmarus glacialis) is well documented. In this study, we measured PBDEs levels in liver tissue of northern fulmars without and with (0.13–0.43 g per individual) stomach plastics. PBDE concentrations in the plastic sampled from the same birds were also quantified. Birds were either found dead on beaches in southern Norway or incidentally caught in longline fisheries in northern Norway. PBDEs were detected in all birds but high concentrations were only found in liver samples from beached birds, peaking at 2900 ng/g lipid weight. We found that body condition was a significant factor explaining the elevated concentration levels in livers of beached birds. BDE209 was found in ingested plastic particles and liver tissue of birds with ingested plastics but was absent in the livers of birds without ingested plastics. This strongly suggests a plastic-derived transfer and accumulation of BDE209 to the tissue of fulmars, levels of which might prove useful as a general indicator of plastic ingestion in seabirds.
2021
The effective enrichment of perfluoroalkyl acids (PFAAs) in sea spray aerosols (SSA) demonstrated in previous laboratory studies suggests that SSA is a potential source of PFAAs to the atmosphere. In order to investigate the influence of SSA on atmospheric PFAAs in the field, 48 h aerosol samples were collected regularly between 2018 and 2020 at two Norwegian coastal locations, Andøya and Birkenes. Significant correlations (p < 0.05) between the SSA tracer ion, Na+, and PFAA concentrations were observed in the samples from both locations, with Pearson’s correlation coefficients (r) between 0.4–0.8. Such significant correlations indicate SSA to be an important source of atmospheric PFAAs to coastal areas. The correlations in the samples from Andøya were observed for more PFAA species and were generally stronger than in the samples from Birkenes, which is located further away from the coast and closer to urban areas than Andøya. Factors such as the origin of the SSA, the distance of the sampling site to open water, and the presence of other PFAA sources (e.g., volatile precursor compounds) can have influence on the contribution of SSA to PFAA in air at the sampling sites and therefore affect the observed correlations between PFAAs and Na+.
2021
Fluorescent Nanocomposites: Hollow Silica Microspheres with Embedded Carbon Dots
Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2/g. High absolute zeta potential (−44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3–12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 μg/cm2.
2021
Pollutants emitted by industrial processes are deposited across the landscape. Ice core records from mid-latitude glaciers located close to emission sources document the history of local-to-regional pollution since preindustrial times. Such records underpin attribution of pollutants to specific emission sources critical to developing abatement policies. Previous ice core studies from the Alps document the overall magnitude and timing of pollution related to nitrogen and sulfur-derived species, as well as a few metals including lead. Here, we used subannually resolved measurements of vanadium (V) and molybdenum (Mo) in two ice cores from Col du Dome (French Alps), as well as atmospheric transport and deposition modeling, to investigate sources of pollution in the free European troposphere. The noncrustal V and Mo (ncV, ncMo) components were calculated by subtracting the crustal component from the total concentration. These ice core results showed a 32-fold increase in ncV and a 69-fold increase in ncMo from the preindustrial era (pre-1860) to the industrial concentration peaks. Anthropogenic V and Mo emissions in Europe were estimated using emission factors from oil and coal consumption and atmospheric transport and deposition modeling. When comparing ice core data to estimated anthropogenic V and Mo emissions in Europe, V was found to be sourced primarily from oil combustion emissions. Conversely, coal and oil combustion estimated emissions did not agree with the measured ice core Mo concentrations, suggesting that other anthropogenic Mo sources dominated coal-burning emissions, particularly after the 1950s. Noncoal-burning sources of Mo may include metallurgy although emission factors are poorly known.
2021
Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
2021
Safety assessment of titanium dioxide (E171) as a food additive
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
2021
The essential-use concept is a tool that can guide the phase-out of per- and polyfluoroalkyl substances (PFAS) and potentially other substances of concern. This concept is a novel approach to chemicals management that determines whether using substances of concern, such as PFAS, is truly essential for a given functionality. To assess the essentiality of a particular use case, three considerations need to be addressed: (1) the function (chemical, end use and service) that the chemical provides in the use case, (2) whether the function is necessary for health and safety and critical for the functioning of society and (3) if the function is necessary, whether there are viable alternatives for the chemical for this particular use. A few illustrative examples of the three-step process are provided for use cases of PFAS. The essential-use concept takes chemicals management away from a substance-by-substance approach to a group approach. For PFAS and other substances of concern, it offers a more rapid pathway toward effective management or phase-out. Parts of the concept of essential use have already been widely applied in global treaties and international regulations and it has also been recently used by product manufacturers and retailers to phase out substances of concern from supply chains. Herein some of the common questions and misinterpretations regarding the practical application of the essential-use concept are reviewed, and answers and further clarifications are provided.
2021
Growing Atmospheric Emissions of Sulfuryl Fluoride
The potent greenhouse gas sulfuryl fluoride (SO2F2) is increasingly used as a fumigant, replacing methyl bromide, whose structural and soil fumigation uses have been phased out under the Montreal Protocol. We use measurements on archived air samples and in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and a box model of the global atmosphere to show a global increase of SO2F2 mole fraction from 0.3 ± 0.02 to 2.5 ± 0.08 ppt along with a global increase in emissions from 0.5 ± 0.4 Gg yr−1 to 2.9 ± 0.4 Gg yr−1 from 1978 to 2019. Based on a hybrid model incorporating bottom-up industry data and a top-down downscaling approach, we estimate the spatial distribution and trend in SO2F2 regional emissions between 2000 and 2019 and propose that the global emissions increase is driven by the growing use of SO2F2 in structural fumigation in North America and in postharvest treatment of grains and other agricultural products worldwide.
2021