Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2674 publications. Showing page 7 of 268:

Publication  
Year  
Category

A European aerosol phenomenology – 9: Light absorption properties of carbonaceous aerosol particles across surface Europe

Rovira, Jordi; Savadkoohi, Marjan; Močnik, Griša; Chen, Gang I.; Aas, Wenche; Alados-Arboledas, Lucas; Artiñano, Begoña; Aurela, Minna; Backman, John; Banerji, Sujai; Beddows, David; Brem, Benjamin T.; Chazeau, Benjamin; Coen, Martine Collaud; Colombi, Cristina; Conil, Sébastien; Costabile, Francesca; Coz, Esther; Brito, Joel F. De; Eleftheriadis, Kostas; Favez, Olivier; Flentje, Harald; Freney, Evelyn; Gregorič, Asta; Gysel-Beer, Martin; Harrison, Roy M.; Hueglin, Christoph; Hyvärinen, Antti; Ivančič, Matic; Kalogridis, Athina-Cerise; Keernik, Hannes; Konstantinos, Granakis; Laj, Paolo; Liakakou, Eleni; Lin, Chunshui; Listrani, Stefano; Luoma, Krista; Maasikmets, Marek; Manninen, Hanna; Marchand, Nicolas; Santos, Sebastiao Martins Dos; Mbengue, Saliou; Mihalopoulos, Nikos; Nicolae, Doina; Niemi, Jarkko V; Norman, Michael; Ovadnevaite, Jurgita; Petit, Jean Eudes; Platt, Stephen Matthew; Prévôt, André S.H.; Pujadas, Manuel; Putaud, Jean-Philippe; Riffault, Véronique; Rigler, Martin; Rinaldi, Matteo; Schwarz, Jaroslav; Silvergren, Sanna; Teinemaa, Erik; Teinilä, Kimmo; Timonen, Hilkka; Titos, Gloria; Tobler, Anna; Vasilescu, Jeni; Vratolis, Stergios; Yttri, Karl Espen; Yubero, Eduardo; Zíková, Naděžda; Alastuey, Andrés; Petäjä, Tuukka; Querol, Xavier; Yus-Díez, Jesús; Pandolfi, Marco

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe.

2025

Lanternfish as bioindicator of microplastics in the deep sea: A spatiotemporal analysis using museum specimens

Ferreira, Guilherme V.B.; Justino, Anne K.S.; Martins, Júlia R.; Eduardo, Leandro Nolé; Schmidt, Natascha; Albignac, Magali; Braga, Adriana C.; Costa, Paulo A. S.; Fischer, Luciano Gomes; Halle, Alexandra ter; Bertrand, Arnaud; Lucena-Fredou, Flavia; Mincarone, Michael M.

2025

Indian Land Carbon Sink Estimated from Surface and GOSAT Observations

Nayagam, Lorna Raja; Maksyutov, Shamil; Janardanan, Rajesh; Oda, Tomohiro; Tiwari, Yogesh K.; Sreenivas, Gaddamidi; Datye, Amey; Jain, Chaithanya D.; Ratnam, Madineni Venkat; Sinha, Vinayak; Hakkim, Haseeb; Terao, Yukio; Naja, Manish; Ahmed, Md. Kawser; Mukai, Hitoshi; Zeng, Jiye; Kaiser, Johannes; Someya, Yu; Yoshida, Yukio

The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.

2025

Exploring the Chemical Complexity and Sources of Airborne Fine Particulate Matter in East Asia by Nontarget Analysis and Multivariate Modeling

Froment, Jean Francois; Park, Jong-Uk; Kim, Sang-Woo; Cho, Yoonjin; Choi, Soobin; Seo, Young Hun; Baik, Seungyun; Lee, Ji Eun; Martin, Jonathan W.

The complex and dynamic nature of airborne fine particulate matter (PM2.5) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM2.5 samples (n = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry. More than 50,000 nontarget features were detected, and by consensus of in silico tools, we assigned a molecular formula to 13,907 features. Oxygenated compounds were most prominent, followed by mixed nitrogenated/oxygenated compounds, organic sulfates, and sulfonates. Spectral matching enabled identification or structural annotation of 43 substances, and a workflow involving SIRIUS and MS-DIAL software enabled annotation of 74 unknown per- and polyfluoroalkyl substances with primary source regions in China and the Korean Peninsula. Multivariate modeling revealed seasonal variations in chemistry, attributable to the combination of warmer temperatures and maritime source regions in summer and to cooler temperatures and source regions of China in winter.

2025

Transformation Product Formation and Removal Efficiency of Emerging Pollutants by Three-Dimensional Ceramic Carbon Foam-Supported Electrochemical Oxidation

Froment, Jean Francois; Pierpaoli, Mattia; Gundersen, Hans; Davanger, Kirsten; Bjørneby, Stine Marie; Eikenes, Heidi; Skowierzak, Grzegorz; Ślepskic, Paweł; Jakóbczyk, Paweł; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel

This study evaluated galvanostatic three-dimensional electrolysis using ceramic carbon foam anodes for the removal of emerging pollutants from wastewater and assessed transformation product formation. Five pollutants (paracetamol, triclosan, bisphenol A, caffeine, and diclofenac) were selected based on their detection in wastewater treatment plant effluents. Electrochemical oxidation was carried out on artificial wastewater spiked with these compounds under galvanostatic conditions (50, 125, and 250 mA) using a stainless steel tube electrolyzer with three ceramic carbon foam anodes and a stainless steel cathode. Decreasing pollutant concentrations were observed in all of the experiments. Nontarget chemical analysis using liquid chromatography coupled to a high-resolution mass spectrometer detected 338 features with increasing intensity including 12 confirmed transformation products (TPs). Real wastewater effluent spiked with the pollutants was then electrolyzed, again showing pollutant removal, with 9 of the 12 previously identified TPs present and increasing. Two TPs (benzamide and 2,4-dichlorophenol) are known toxicants, indicating the formation of a potential toxic by-product during electrolysis. Furthermore, electrolysis of unspiked real wastewater revealed the removal of five pharmaceuticals and a drug metabolite. While demonstrating electrolysis’ ability to degrade pollutants in wastewater, the study underscores the need to investigate transformation product formation and toxicity implications of the electrolysis process.

2025

A framework for advancing independent air quality sensor measurements via transparent data generating process classification

Diez, Sebastiàn; Bannan, Thomas J.; Chacón-Mateos, Miriam; Edwards, Pete M.; Ferracci, Valerio; Kilic, Dogushan; Lewis, Alastair C.; Malings, Carl; Martin, Nicholas A.; Popoola, Olalekan; Rosales, Colleen Marciel F.; Schmitz, Sean; Schneider, Philipp; Schneidemesser, Erika von

We propose operational definitions and a classification framework for air quality sensor-derived data, thereby aiding users in interpreting and selecting suitable data products for their applications. We focus on differentiating independent sensor measurements (ISM) from other data products, emphasizing transparency and traceability. Recommendations are provided for manufacturers, academia, and standardization bodies to adopt these definitions, fostering data product differentiation and incentivizing the development of more robust, reliable sensor hardware.

2025

Unprecedented shifts in aerosol pollution sources in China under a decade of clean air actions

Fang, Wenzheng; Evangeliou, Nikolaos; Eckhardt, Sabine; Xiao, Hang; Li, Haibo

China is a major hotspot of black carbon (BC) emissions, contributing to climate warming and risk to public health. Here, our dual-isotope-constrained observations indicate stringent air pollution controls have drastically reduced coal-burning in North China over the past decade, marking a transition to a “post-coal” era compared to earlier 2012–2014. However, biomass-burning fraction (fbb) for north/central/east winter hazes has doubled from earlier (north/east) ~20%, with significantly higher fbb during polluted winters. Comparisons between observation and transport modelling show good alignment in BC concentrations but substantial discrepancies in source attribution (i.e., fbb). Leveraging radiocarbon measurements, advanced atmospheric modelling, and a Bayesian approach, our study identifies biases stemming from misallocated residential fuel types in emission inventories. These findings underscore the untapped potential to mitigate BC emissions by targeting rural biomass burning, while providing critical insights into BC source evolution to refine emission inventories and formulate effective air quality policies for China and other nations facing severe air pollution.

2025

Non-target and suspect screening of volatile organic compounds from Scots pine and Norway spruce building materials

Bakke, Ingrid Marie; Kallenborn, Roland; Nyrud, Anders Q.; Håland, Alexander

Wood building materials can be a source of volatile organic compounds (VOCs) in the indoor environment and increasing focus is put on classification and regulation of the use of wood building materials in Europe. The main wood related VOCs such as monoterpenes rarely pose adverse health effects for humans, but as analytical procedures become more sensitive new hazardous VOCs are detected in low concentration. There is a need for comprehensive identification of VOCs emitting from different wood building materials for indoor use. This study performed a first semi-quantitative non-target and suspect screening of VOC emissions from three important wood-based building materials in Europe. Air samples collected from emission chambers were analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry and resulting mass spectra were classified into confidence groups. A total of 84, 133 and 197 compounds were found to emit from cross-laminated timber, untreated spruce panel and untreated pine panel, respectively. Pine panel was found to emit a higher number of VOCs as well as higher concentrations of most VOCs compared to the spruce building materials. Several new VOCs were detected in the emission profile of pine and spruce. However, they were mostly structurally similar to previously reported wood VOCs. Two compounds of concern emitting from all three wood building materials were furfural and (E)-2-octenal, as these have been classified as group 2 carcinogen and potent eye irritant, respectively.

2025

Citizen-operated low-cost sensors for estimating outdoor particulate matter infiltration

Salamalikis, Vasileios; Hassani, Amirhossein; Zawadzki, Paweł; Bykuć, Sebastian; Castell, Nuria

Fine particulates observed indoors exhibit high variability, influenced by both indoor emission sources and the infiltration of outdoor particles through open spaces and the incomplete building insulation. This study examines the relationship between indoor and outdoor PM2.5 levels in Legionowo, Poland, using data from low-cost air quality sensors operated by citizens. The indoor PM2.5 was lower than outdoor levels (median PM2.5: 1.9–17.3 μg m–3 indoors and 6.7–27.9 μg m–3 outdoors), with occasional peaks attributed to potential indoor emission sources. Statistical analysis identified emission events—particularly during cooking and household-heating periods—occurring more frequently from October to April. During this period, nearly 17% of indoor PM2.5 measurements were attributed to indoor emission sources after 18:00 LT, representing a 7% increase compared to the May–September period. In the absence of indoor sources, outdoor particles accounted for 29% to 75% of indoor concentrations, highlighting the significance of infiltration. This research emphasizes how citizen-generated data using low-cost sensors, after post-processing, can provide decision-ready information as for example outdoor particles’ infiltration factors for each building. The knowledge of the infiltration factor enables the determination of the contribution of indoor and outdoor sources to each resident’s exposure to airborne PM. This information can help decision-makers in devising interventions such as prioritizing indoor ventilation, reducing indoor activities resulting in increased exposure, and addressing outdoor pollution sources.

2025

Understanding the origins of urban particulate matter pollution based on high-density vehicle-based sensor monitoring and big data analysis

Liang, Yiheng; Wang, Xiaohua; Dong, Zhongzhen; Wang, Xinfeng; Wang, Shidong; Si, Shuchun; Wang, Jing; Liu, Hai Ying; Zhang, Qingzhu; Wang, Qiao

2025

Publication
Year
Category