Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2670 publications. Showing page 71 of 267:

Publication  
Year  
Category

Global and regional trends of atmospheric sulfur

Aas, Wenche; Mortier, Augustin; Bowersox, Van C.; Cherian, Ribu; Faluvegi, Greg; Fagerli, Hilde; Hand, Jenny; Klimont, Zbigniew; Galy-Lacaux, Corinne; Lehmann, Christopher M.B.; Myhre, Cathrine Lund; Myhre, Gunnar; Oliviè, Dirk Jan Leo; Sato, Keiichi; Quaas, Johannes; Rao, Pasumarthi Surya Prakasa; Schulz, Michael; Shindell, Drew; Skeie, Ragnhild Bieltvedt; Stein, Ariel; Takemura, Toshihiko; Tsyro, Svetlana; Vet, Robert; Xu, Xiaobin

The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.

2019

Pelagic vs coastal - Key drivers of pollutant levels in Barents Sea polar bears with contrasted space-use strategies

Blévin, Pierre; Aars, Jon; Andersen, Magnus; Blanchet, Marie-Anne; Hanssen, Linda; Herzke, Dorte; Jeffreys, Rachel M.; Nordøy, Erling Sverre; Pinzone, Marianna; Vega, Camille de la; Routti, Heli Anna Irmeli

In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges that may explain the difference in their pollutant levels. We measured polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl substances in plasma in pelagic and coastal adult female polar bears with similar body condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We studied energy expenditure by estimating field metabolic rate using telemetry data. Annual home range size was determined, and spatial gradients in pollutants were explored using latitude and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals from the Greenland Sea and White Sea–Barents Sea as a proxy for a West–East gradient of pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than coastal bears because (1) they feed on a higher proportion of marine and higher trophic level prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/transport pathways.

2019

Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic

Im, Ulas; Christensen, Jesper H.; Nielsen, Ole-Kenneth; Sand, Maria; Makkonen, Risto; Geels, Camilla; Anderson, Camilla; Kukkonen, Jaakko; Lopez-Aparicio, Susana; Brandt, Jørgen

This modeling study presents the sectoral contributions of anthropogenic emissions in the four Nordic countries (Denmark, Finland, Norway and Sweden) on air pollution levels and the associated health impacts and costs over the Nordic and the Arctic regions for the year 2015. The Danish Eulerian Hemispheric Model (DEHM) has been used on a 50 km resolution over Europe in tagged mode in order to calculate the response of a 30 % reduction of each emission sector in each Nordic country individually. The emission sectors considered in the study were energy production, non-industrial/commercial heating, industry, traffic, off-road mobile sources and waste management/agriculture. In total, 28 simulations were carried out. Following the air pollution modeling, the Economic Valuation of Air Pollution (EVA) model has been used to calculate the associated premature mortality and their costs. Results showed that more than 80 % of the PM2.5 concentration was attributed to transport from outside these four countries, implying an effort outside the Nordic region in order to decrease the pollutant levels over the area. The leading emission sector in each country was found to be non-industrial combustion (contributing by more than 60 % to the total PM2.5 mass coming from the country itself), except for Sweden, where industry contributed to PM2.5 with a comparable amount to non-industrial combustion. In addition to non-industrial combustion, the next most important source categories were industry, agriculture and traffic. The main chemical constituent of PM2.5 concentrations that comes from the country itself is calculated to be organic carbon in all countries, which suggested that non-industrial wood burning was the dominant national source of pollution in the Nordic countries. We have estimated the total number of premature mortality cases due to air pollution to be around 4000 in Denmark and Sweden and around 2000 in Finland and Norway. These premature mortality cases led to a total cost of EUR 7 billion in the selected Nordic countries. The assessment of the related premature mortality and associated cost estimates suggested that non-industrial combustion, together with industry and traffic, will be the main sectors to be targeted in emission mitigation strategies in the future.

2019

Abating N in Nordic agriculture - Policy, measures and way forward

Hellsten, Sofie; Dalgaard, Tommy; Rankinen, Katri; Tørseth, Kjetil; Bakken, Lars; Bechmann, Marianne; Kulmala, Airi; Moldan, Filip; Olofsson, Stina; Piil, Kristoffer; Pira, Kajsa; Turtola, Eila

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years.

The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P.

The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries.

To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country.

The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.

2019

Six-week inhalation of CdO nanoparticles in mice: The effects on immune response, oxidative stress, antioxidative defense, fibrotic response, and bones

Tulinska, Jana; Masanova, Vlasta; Liskova, Aurelia; Mikusova, Miroslava Lehotska; Rollerova, Eva; Krivosikova, Zora; Stefikova, Kornelia; Uhnakova, Iveta; Ursinyova, Monika; Babickova, Janka; Bábelová, Andrea; Busova, Milena; Tothova, Lubomira; Wsolova, Ladislava; Dusinska, Maria; Sojka, Martin; Horvathova, Mira; Alacova, Radka; Vecera, Zbynek; Mikuska, Pavel; Coufalik, Pavel; Krumal, Kamil; Capka, Lukas; Docekal, Bohumil

2019

Technical recommendations to perform the alkaline standard and enzyme-modified comet assay in human biomonitoring studies

Azqueta, Amaya; Muruzabal, Damian; Boutet-Robinet, Elisa; Milic, Mirta; Dusinska, Maria; Brunborg, Gunnar; Møller, Peter; Collins, Andrew R.

2019

Using elemental analyses and multivariate statistics to identify the off-site dispersion from informal e-waste processing

Mudge, Stephen Michael; Pfaffhuber, Katrine Aspmo; Fobil, Julis N.; Bouman, Evert; Uggerud, Hilde Thelle; Thorne, Rebecca Jayne

Electronic waste (e-waste) is informally processed and recycled in Agbogbloshie in Accra (Ghana), which may be the largest such site in West Africa. This industry can lead to significant environmental contamination. In this study, surface dust samples were collected at a range of sites within Accra to establish the offsite consequences of such activities. Fifty-one samples were collected and analysed for 69 elements by ICP-mass spectrometry after nitric acid digestion. The data indicated a significant enrichment in metals associated with solder and copper wire at the site itself and a downwind dispersion of this source material to a distance of approximately 2.0 km. Chlorine and bromine were also elevated at this site as residues from polyvinyl chloride combustion and flame retardants respectively. The elemental composition indicated that only low technology electrical equipment was being treated this way. Multivariate statistical analyses by principal components analysis and polytopic vector analysis identified three sources contributing to the system; (i) burn site residue dispersing within 2 km from the source site, (ii) marine matter on the beaches alone and (iii) the baseline soil conditions of the city of Accra. Risk ratios and hazard quotients developed from the measured concentrations indicated that copper was providing the greatest risk to inhabitants in most cases although nickel, vanadium, chromium and zinc also contributed.

2019

Air Pollution Monitoring for Health Research and Patient Care. An Official American Thoracic Society Workshop Report

Cromar, Kevin R.; Duncan, Bryan N.; Bartonova, Alena; Benedict, Kristen; Brauer, Michael; Habre, Rima; Hagler, Gayle S. W.; Haynes, John A.; Khan, Sean; Kilaru, Vasu; Liu, Yang; Pawson, Steven; Peden, David B.; Quint, Jennifer K.; Rice, Mary B.; Sasser, Erika N.; Seto, Edmund; Stone, Susan L.; Thurston, George D.; Volckens, John

2019

Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling

Winiger, P.; Barrett, T. E.; Sheesley, R. J.; Huang, L.; Sharma, S.; Barrie, L. A.; Yttri, Karl Espen; Evangeliou, Nikolaos; Eckhardt, Sabine; Stohl, Andreas; Klimont, Z.; Heyes, C.; Semiletov, I. P.; Dudarev, O. V.; Charkin, A.; Shakhova, N.; Holmstrand, H.; Andersson, A.; Gustafsson, Ö.

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.

2019

Publication
Year
Category