Found 2533 publications. Showing page 72 of 254:
Exposure to airborne fine particulate matter (PM2.5) carries substantial health risks, particularly for younger children (0–10 years). Epidemiological evidence indicates that children are more susceptible to PM health effects than adults. We conducted a literature review to obtain an overview of existing knowledge regarding the correlation of exposure to short- and long-term PM concentrations with respiratory symptoms and disease in children. A collection of scientific papers and topical reviews were selected in cooperation with two experienced paediatricians. The literature review was performed using the keywords “air pollution”, “particulate matter”, “children’s health” and “respiratory” from 1950 to 2016, searching the databases of Scopus, Google Scholar, Web of Science, and PubMed. The search provided 45,191 studies for consideration. Following the application of eligibility criteria and experts’ best judgment to titles and abstracts, 28 independent studies were deemed relevant for further detailed review and knowledge extraction. The results showed that most studies focused mainly on the effect of short-term exposure in children, and the reported associations were relatively homogeneous amongst the studies. Most of the respiratory diseases observed in outdoor studies were related to changes in lung function and exacerbation of asthma symptoms. Allergic reactions were frequently reported in indoor studies. Asthma exacerbation, severe respiratory symptoms and moderate airway obstruction on spirometry were also observed in children due to various sources of indoor pollution in households and schools. Mixed indoor and outdoor studies indicate frequent occurrence of wheezing and deterioration of lung function. There is good evidence of the adverse effect of short-term exposure to PM on children’s respiratory health. In terms of long-term exposure, fine particles (PM0.1–PM2.5) represent a higher risk factor than coarse particles (PM2.5–PM10). Additional research is required to better understand the heterogeneous sources and the association of PM and adverse children’s health outcomes. We recommend long-term cooperation between air quality specialists, paediatricians, epidemiologists, and parents in order to improve the knowledge of PM effects on young children’s respiratory health.
MDPI
2018
Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.
2018
2018
The safety of high quality drinking water supply relies on the quantities to be delivered, on the complexity of the water supply systems, and on the widespread phenomena of the contamination of water bodies. These parameters indicate the need for the development of an application that will allow the quick acquisition of data on strategic management. This is requires both the analysis of factors related to the hydraulic operation of the plants and the characteristics of water quality. The present paper aims to evaluate the use of models that predict data for water quality in a distribution system. The assessment is made in order to consider the use of the model as a support tool for the management system of a supply network and to optimize the quality of the provided service. The improvement of the control system related to the operations of disinfection, in particular, in the case of long pipelines, is absolutely mandatory in order to ensure the safety of public health and respect for the environment at high levels.
MDPI
2018
Signals from the south; humpback whales carry messages of Antarctic sea‐ice ecosystem variability
John Wiley & Sons
2018
2018
Academic Press
2018
Altitude-temporal behaviour of atmospheric ozone, temperature and wind velocity observed at Svalbard
Elsevier
2018
Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline
American Geophysical Union (AGU)
2018