Found 2696 publications. Showing page 73 of 270:
<i>Background</i> - Concerns have been raised that extensive use of personal care products that contain endocrine disrupting compounds increase the risk of hormone sensitive cancers.<p> <p><i>Objective</i> - To assess the effect of skincare product use on the risk of pre- and postmenopausal breast cancer, estrogen receptor positive (ER+) and negative (ER-) breast cancer and cancer of the endometrium.<p> <p><i>Methods</i> - We used data from 106,978 participants in the population-based Norwegian Women and Cancer cohort. Participants were categorized into non-, light, moderate, frequent and heavy users of skincare products based on self-reported use of hand and facial cream and body lotion. Cancer incidence information from the Cancer Registry of Norway was linked to individual data through the unique identity number of Norwegian citizens. Multivariable Cox proportional hazard regression was used to assess the effect of skincare product use on the risk of cancer of the breast and endometrium. We used multiple imputation by chained equations to evaluate the effect of missing data on observed associations.<p> <p><i>Results</i> - We found no associations between use of skincare products and incidence of premenopausal breast cancer (frequent/heavy versus non−/light use: hazard ratio [HR] =1.10, 95% confidence interval [CI]: 0.92–1.32), postmenopausal breast cancer (heavy versus light use: HR = 0.87, 95% CI: 0.65–1.18, frequent versus light use: HR = 0.97, 95% CI: 0.88, 1.07) or endometrial cancer (frequent/heavy versus non−/light use: HR = 0.97, 95% CI: 0.79–1.20). Use of skincare products did not increase the risk of ER+ or ER- breast cancer and there was no difference in effect across ER status (0.58 ≤ <sub>pheterogeneity</sub> ≤ 0.99). The magnitude and direction of the effect estimates based on complete case analyses and multiple imputation were similar.<p> <p><i>Conclusion</i> Heavy use of skincare products, i.e. creaming the body up to two times per day during mid-life, did not increase the risk of cancer of the breast or endometrium.
2019
Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
Sunlit snow is highly photochemically active and plays a key role in the exchange of gas phase species between the cryosphere and the atmosphere. Here, we investigate the behaviour of two selected species in surface snow: mercury (Hg) and iodine (I). Hg can deposit year-round and accumulate in the snowpack. However, photo-induced re-emission of gas phase Hg from the surface has been widely reported. Iodine is active in atmospheric new particle formation, especially in the marine boundary layer, and in the destruction of atmospheric ozone. It can also undergo photochemical re-emission. Although previous studies indicate possible post-depositional processes, little is known about the diurnal behaviour of these two species and their interaction in surface snow. The mechanisms are still poorly constrained, and no field experiments have been performed in different seasons to investigate the magnitude of re-emission processes Three sampling campaigns conducted at an hourly resolution for 3 d each were carried out near Ny-Ålesund (Svalbard) to study the behaviour of mercury and iodine in surface snow under different sunlight and environmental conditions (24 h darkness, 24 h sunlight and day–night cycles). Our results indicate a different behaviour of mercury and iodine in surface snow during the different campaigns. The day–night experiments demonstrate the existence of a diurnal cycle in surface snow for Hg and iodine, indicating that these species are indeed influenced by the daily solar radiation cycle. Differently, bromine did not show any diurnal cycle. The diurnal cycle also disappeared for Hg and iodine during the 24 h sunlight period and during 24 h darkness experiments supporting the idea of the occurrence (absence) of a continuous recycling or exchange at the snow–air interface. These results demonstrate that this surface snow recycling is seasonally dependent, through sunlight. They also highlight the non-negligible role that snowpack emissions have on ambient air concentrations and potentially on iodine-induced atmospheric nucleation processes.
2019
Using meteor wind data from the Super Dual Auroral Radar Network (SuperDARN) in the Northern Hemisphere, we (1) demonstrate that the migrating (Sun‐synchronous) tides can be separated from the nonmigrating components in the mesosphere and lower thermosphere (MLT) region and (2) use this to determine the response of the different components of the semidiurnal tide (SDT) to sudden stratospheric warming (SSW) conditions. The radars span a limited range of latitudes around 60°N and are located over nearly 180° of longitude. The migrating tide is extracted from the nonmigrating components observed in the meridional wind recorded from meteor ablation drift velocities around 95‐km altitude, and a 20‐year climatology of the different components is presented. The well‐documented late summer and wintertime maxima in the semidiurnal winds are shown to be due primarily to the migrating SDT, whereas during late autumn and spring the nonmigrating components are at least as strong as the migrating SDT. The robust behavior of the SDT components during SSWs is then examined by compositing 13 SSW events associated with an elevated stratopause recorded between 1995 and 2013. The migrating SDT is seen to reduce in amplitude immediately after SSW onset and then return anomalously strongly around 10–17 days after the SSW onset. We conclude that changes in the underlying wind direction play a role in modulating the tidal amplitude during the evolution of SSWs and that the enhancement in the midlatitude migrating SDT (previously reported in modeling studies) is observed in the MLT at least up to 60°N.
2019
2019
Frequency of extreme precipitation increases extensively with event rareness under global warming
The intensity of the heaviest extreme precipitation events is known to increase with global warming. How often such events occur in a warmer world is however less well established, and the combined effect of changes in frequency and intensity on the total amount of rain falling as extreme precipitation is much less explored, in spite of potentially large societal impacts. Here, we employ observations and climate model simulations to document strong increases in the frequencies of extreme precipitation events occurring on decadal timescales. Based on observations we find that the total precipitation from these intense events almost doubles per degree of warming, mainly due to changes in frequency, while the intensity changes are relatively weak, in accordance to previous studies. This shift towards stronger total precipitation from extreme events is seen in observations and climate models, and increases with the strength – and hence the rareness – of the event. Based on these results, we project that if historical trends continue, the most intense precipitation events observed today are likely to almost double in occurrence for each degree of further global warming. Changes to extreme precipitation of this magnitude are dramatically stronger than the more widely communicated changes to global mean precipitation.
2019
Global and regional trends of atmospheric sulfur
The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
2019
In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges that may explain the difference in their pollutant levels. We measured polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl substances in plasma in pelagic and coastal adult female polar bears with similar body condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We studied energy expenditure by estimating field metabolic rate using telemetry data. Annual home range size was determined, and spatial gradients in pollutants were explored using latitude and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals from the Greenland Sea and White Sea–Barents Sea as a proxy for a West–East gradient of pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than coastal bears because (1) they feed on a higher proportion of marine and higher trophic level prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/transport pathways.
2019
This modeling study presents the sectoral contributions of anthropogenic emissions in the four Nordic countries (Denmark, Finland, Norway and Sweden) on air pollution levels and the associated health impacts and costs over the Nordic and the Arctic regions for the year 2015. The Danish Eulerian Hemispheric Model (DEHM) has been used on a 50 km resolution over Europe in tagged mode in order to calculate the response of a 30 % reduction of each emission sector in each Nordic country individually. The emission sectors considered in the study were energy production, non-industrial/commercial heating, industry, traffic, off-road mobile sources and waste management/agriculture. In total, 28 simulations were carried out. Following the air pollution modeling, the Economic Valuation of Air Pollution (EVA) model has been used to calculate the associated premature mortality and their costs. Results showed that more than 80 % of the PM2.5 concentration was attributed to transport from outside these four countries, implying an effort outside the Nordic region in order to decrease the pollutant levels over the area. The leading emission sector in each country was found to be non-industrial combustion (contributing by more than 60 % to the total PM2.5 mass coming from the country itself), except for Sweden, where industry contributed to PM2.5 with a comparable amount to non-industrial combustion. In addition to non-industrial combustion, the next most important source categories were industry, agriculture and traffic. The main chemical constituent of PM2.5 concentrations that comes from the country itself is calculated to be organic carbon in all countries, which suggested that non-industrial wood burning was the dominant national source of pollution in the Nordic countries. We have estimated the total number of premature mortality cases due to air pollution to be around 4000 in Denmark and Sweden and around 2000 in Finland and Norway. These premature mortality cases led to a total cost of EUR 7 billion in the selected Nordic countries. The assessment of the related premature mortality and associated cost estimates suggested that non-industrial combustion, together with industry and traffic, will be the main sectors to be targeted in emission mitigation strategies in the future.
2019
Abating N in Nordic agriculture - Policy, measures and way forward
During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years.
The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P.
The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries.
To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country.
The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.
2019
2019