Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2678 publications. Showing page 78 of 268:

Publication  
Year  
Category

Polycyclic Aromatic Hydrocarbons Not Declining in Arctic Air Despite Global Emission Reduction

Yu, Yong; Katsoyiannis, Athanasios A.; Bohlin-Nizzetto, Pernilla; Brorström-Lundén, Eva; Ma, Jianmin; Zhao, Yuan; Wu, Zhiyong; Tych, Wlodzimierz; Mindham, David; Sverko, Ed; Barresi, Enzo; Dryfhout-Clark, Helena; Fellin, Phil; Hung, Hayley

Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas > Zeppelin > Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as more volatile flame retardants and pesticides.

2019

Global Historical Stocks and Emissions of PBDEs

Abbasi, Golnoush; Li, Li; Breivik, Knut

The first spatially and temporally resolved inventory of BDE28, 47, 99, 153, 183, and 209 in the anthroposphere and environment is presented here. The stock and emissions of PBDE congeners were estimated using a dynamic substance flow analysis model, CiP-CAFE. To evaluate our results, the emission estimates were used as input to the BETR-Global model. Estimated concentrations were compared with observed concentrations in air from background areas. The global (a) in-use and (b) waste stocks of ∑5BDE(28, 47, 99, 153, 183) and BDE209 are estimated to be (a) ∼25 and 400 kt and (b) 13 and 100 kt, respectively, in 2018. A total of 6 (0.3–13) and 10.5 (9–12) kt of ∑5BDE and BDE209, respectively, has been emitted to the atmosphere by 2018. More than 70% of PBDE emissions during production and use occurred in the industrialized regions, while more than 70% of the emissions during waste disposal occurred in the less industrialized regions. A total of 70 kt of ∑5BDE and BDE209 was recycled within products since 1970. As recycling rates are expected to increase under the circular economy, an additional 45 kt of PBDEs (mainly BDE209) may reappear in new products.

2019

New insights in sources of the sub-micrometre aerosol at Mt. Zeppelin observatory (Spitsbergen) in the year 2015

Karl, Matthias; Leck, Caroline; Rad, Farshid Mashayekhy; Bäcklund, Are; Lopez-Aparicio, Susana; Heintzenberg, Jost

In order to evaluate the potential impact of the Arctic anthropogenic emission sources it is essential to understand better the natural aerosol sources of the inner Arctic and the atmospheric processing of the aerosols during their transport in the Arctic atmosphere. A 1-year time series of chemically specific measurements of the sub-micrometre aerosol during 2015 has been taken at the Mt. Zeppelin observatory in the European Arctic. A source apportionment study combined measured molecular tracers as source markers, positive matrix factorization, analysis of the potential source distribution and auxiliary information from satellite data and ground-based observations. The annual average sub-micrometre mass was apportioned to regional background secondary sulphate (56%), sea spray (17%), biomass burning (15%), secondary nitrate (5.8%), secondary marine biogenic (4.5%), mixed combustion (1.6%), and two types of marine gel sources (together 0.7%). Secondary nitrate aerosol mainly contributed towards the end of summer and during autumn. During spring and summer, the secondary marine biogenic factor reached a contribution of up to 50% in some samples. The most likely origin of the mixed combustion source is due to oil and gas extraction activities in Eastern Siberia. The two marine polymer gel sources predominantly occurred in autumn and winter. The small contribution of the marine gel sources at Mt. Zeppelin observatory in summer as opposed to regions closer to the North Pole is attributed to differences in ocean biology, vertical distribution of phytoplankton, and the earlier start of the summer season.

2019

Integrated exposure assessment of northern goshawk (Accipiter gentilis) nestlings to legacy and emerging organic pollutants using non-destructive samples

Briels, Nathalie; Torgersen, Lene Norstrand; Castano-Ortíz, Jose M.; Løseth, Mari Engvig; Herzke, Dorte; Nygård, Torgeir; Bustnes, Jan Ove; Ciesielski, Tomasz Maciej; Poma, Giulia; Malarvannan, Govindan; Covaci, Adrian; Jaspers, Veerle

In the present study, concentrations of legacy and emerging contaminants were determined in three non-destructive matrices (plasma, preen oil and body feathers) of northern goshawk (Accipiter gentilis) nestlings. Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), together with emerging pollutants, including per- and polyfluorinated alkyl substances (PFASs), novel brominated flame retardants (NBFRs), phosphorus flame retardants (PFRs) and Dechlorane Plus isomers (DPs) were targeted. Plasma, preen oil and feather samples were collected from 61 goshawk nestlings in Norway (Trøndelag and Troms) in 2015 and 2016, and pollutant concentrations were compared between the three matrices. In plasma, PFASs were detected in the highest concentrations, ranging between 1.37 and 36.0 ng/mL, which suggests that the nestlings were recently and continuously exposed to these emerging contaminants, likely through dietary input. In preen oil, OCPs (169–3560 ng/g) showed the highest concentrations among the investigated compounds, consistent with their high lipophilicity. PFRs (2.60–314 ng/g) were the dominant compounds in feathers and are thought to originate mainly from external deposition, as they were not detected in the other two matrices. NBFRs and DPs were generally not detected in the nestlings, suggesting low presence of these emerging contaminants in their environment and/or low absorption. Strong and significant correlations between matrices were found for all POPs (rs = 0.46–0.95, p < 0.001), except for hexachlorobenzene (HCB, rs = 0.20, p = 0.13). Correlations for PFASs were less conclusive: linear perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA) and perfluorotetradecanoate (PFTeA) showed strong and significant correlations between plasma and feathers (rs = 0.42–0.72, p < 0.02), however no correlation was found for perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA) and perfluorotridecanoate (PFTriA) (rs = 0.05–0.33, p = 0.09–0.85). A lack of consistency between the PFAS compounds (contrary to POPs), and between studies, prevents concluding on the suitability of the investigated matrices for PFAS biomonitoring.

2019

Nanomaterial grouping: Existing approaches and future recommendations

Giusti, Anna; Atluri, Rambabu; Tsekovska, Rositsa; Gajewicz, Agnieszka; Apostolova, Margarita; Battistelli, Chiara L.; Bleeker, Eric; Bossa, Cecilia; Bouillard, Jaques; Dusinska, Maria; Gómez-Fernández, Paloma; Grafström, Roland; Gromelski, Maciej; Handzhiyski, Yordan; Jacobsen, Nicklas Raun; Jantunen, Paula; Jensen, Keld Alstrup; Mech, Agnieszka; Navas, José Maria; Nymark, Penny; Oomen, Agnes G.; Puzyn, Tomasz; Rasmussen, Kirsten; Riebeling, Christian; Rodriguez-LLopis, Isabel; Sabella, Stefania; Sintes, Juan Riego; Suarez-Merino, Blanca; Tanasescu, Speranta; Wallin, Håkan; Haase, Andrea

The physico-chemical properties of manufactured nanomaterials (NMs) can be fine-tuned to obtain different functionalities addressing the needs of specific industrial applications. The physico-chemical properties of NMs also drive their biological interactions. Accordingly, each NM requires an adequate physico-chemical characterization and potentially an extensive and time-consuming (eco)toxicological assessment, depending on regulatory requirements. Grouping and read-across approaches, which have already been established for chemicals in general, are based on similarity between substances and can be used to fill data gaps without performing additional testing. Available data on “source” chemicals are thus used to predict the fate, toxicokinetics and/or (eco)toxicity of structurally similar “target” chemical(s). For NMs similar approaches are only beginning to emerge and several challenges remain, including the identification of the most relevant physico-chemical properties for supporting the claim of similarity. In general, NMs require additional parameters for a proper physico-chemical description. Furthermore, some parameters change during a NM's life cycle, suggesting that also the toxicological profile may change.

This paper compares existing concepts for NM grouping, considering their underlying basic principles and criteria as well as their applicability for regulatory and other purposes. Perspectives and recommendations based on experiences obtained during the EU Horizon 2020 project NanoReg2 are presented. These include, for instance, the importance of harmonized data storage systems, the application of harmonized scoring systems for comparing biological responses, and the use of high-throughput and other screening approaches. We also include references to other ongoing EU projects addressing some of these challenges.

2019

Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine

Patsula, Vitalii; Tulinska, Jana; Trachtová, Štěpánka; Kuricova, Miroslava; Liskova, Aurelia; Španová, Alena; Ciampor, Fedor; Vávra, Ivo; Rittich, Bohuslav; Ursinyova, Monika; Dusinska, Maria; Ilavska, Silvia; Horvathova, Mira; Masanova, Vlasta; Uhnakova, Iveta; Horák, Daniel

2019

Genetic variation associated with chromosomal aberration frequency: A genome‐wide association study

Niazi, Yasmeen; Thomsen, Hauke; Smolkova, Bozena; Vodickova, Ludmila; Vodenkova, Sona; Kroupa, Michal; Vymetalkova, Veronika; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Staruchova, Marta; Hoffmann, Per; Nöthen, Markus M.; Dusinska, Maria; Musak, Ludovit; Vodicka, Pavel; Hemminki, Kari; Försti, Asta

2019

Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic)

Skaar, Jøran Solnes; Ræder, Erik Magnus; Lyche, Jan Ludvig; Ahrens, Lutz; Kallenborn, Roland

A combination of local (i.e. firefighting training facilities) and remote sources (i.e., long-range transport) are assumed to be responsible for the occurrence of per- and polyfluoroalkyl substances (PFASs) in Svalbard (Norwegian Arctic). However, no systematic elucidation of local PFASs sources have been conducted yet. Therefore, a survey was performed aiming at identifying local PFASs pollution sources on the island of Spitsbergen (Svalbard, Norway). Soil, fresh water (lake, draining rivers), sea water, melt-water run-off, surface snow and coastal sediment samples were collected from Longyearbyen (Norwegian mining town), Ny-Ålesund (research facility) and the Lake Linnévatnet area (background site) during several campaigns (2014-2016) and analysed for 14 individual target PFASs. For background site (Linnévatnet area, sampling during April to June 2015), ∑PFAS levels ranged from 0.4 – 4 ng/L in surface lake water (n = 20). PFAS in melt water from the contributing glaciers showed similar concentrations (~4 ng/L, n = 2). The short chain perfluorobutanoate (PFBA) was predominant in lake water (60-80% of the ∑PFASs), meltwater (20-30 %) and run-off water (40 %). Long range transport is assumed to be the major PFAS source. In Longyearbyen, 5 water samples (i.e. 2 seawater, 3 run-off) were collected near the local firefighting training site (FFTS) in November 2014 and June 2015, respectively. The highest PFAS levels were found in FFTS melt water run-off (118 ng/L). PFOS was the most abundant compound in the FFTS meltwater run-off (53 – 58 % PFASs). At the research station Ny-Ålesund, sea water (n = 6), soil (n = 9) and fresh water (n = 10) were collected in June 2016. Low ∑PFAS concentrations were determined for sea water (5 - 6 ng/L), whereas high ∑PFAS concentrations were found in run-off water (113 – 119 ng/L) and soil (211 – 800 ng/g dry weight (dw)) collected close to the local FFTS. In addition, high ∑PFAS levels (127 ng/L) were also found in fresh water from lake Solvatnet close to former sewage treatment facility. Overall, at both FFTS affected sites (soil, water), PFOS was the most abundant compound (60 – 69% of ∑PFASs). FFTS and landfill locations were identified as major PFASs sources for Svalbard settlements.

2018

Publication
Year
Category