Found 2678 publications. Showing page 88 of 268:
2018
Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk—a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic—to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmerArctic, but the general decline in
PCB levels is still the most prominent feature. ‘Within-Arctic’ processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB
exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.
2018
2018
We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014.
Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration.
Using CEDS, we estimate a net RFari in 2014 relative to 1750 of −0.17 W m−2, significantly weaker than the IPCC AR5 2011–1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.
2018
2018
2018
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs) and organophosphate esters (OPEs) were assessed in blood plasma and feathers of 19 adult black-legged kittiwakes (Rissa tridactyla) breeding in two colonies (Blomstrandhalvøya and Krykkjefjellet) at the Arctic archipelago, Svalbard. Potential associations with body condition index (BCI) and thyroid hormones were investigated. All compound classes were detected in both blood plasma and feathers, but due to low sample size and volumes, OPEs could only be quantified in four individuals, warranting larger follow-up studies. Kittiwakes breeding at Blomstrandhalvøya had significantly higher concentrations of organic pollutants in blood plasma than kittiwakes breeding at Krykkjefjellet (p < 0.001). Concentrations in blood plasma and feathers did not significantly correlate for any of the investigated compounds, and feather concentrations did not differ significantly between the colonies. This suggests that pollutant levels in adult kittiwake feathers do not reflect local contamination at breeding sites and are as such not useful to monitor local contamination at Svalbard. Significant negative associations between BCI and most pollutants were found in both populations, whereas significant correlations between the BCI, the ratio of total triiodothyronine to free triiodothyronine (TT3:fT3), and several pollutants were only found for kittiwakes from Blomstrandhalvøya (all r ≥ −0.60 and p ≤ 0.05). This indicates that higher levels of circulating pollutants during the breeding period covary with the TT3: fT3 ratio, and may act as an additional stressor during this period.
2018
2018
Signals from the south; humpback whales carry messages of Antarctic sea‐ice ecosystem variability
Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest‐known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea‐ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter‐annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea‐ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.
2018
2018