Found 699 publications. Showing page 18 of 30:
2020
2020
2020
2020
2020
2020
Satellite validation strategy assessments based on the AROMAT campaigns
The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and large power plants in the Jiu Valley. The main objectives of the campaigns were to test recently developed airborne observation systems dedicated to air quality studies and to verify their applicability for the validation of space-borne atmospheric missions such as the TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We present the AROMAT campaigns from the perspective of findings related to the validation of tropospheric NO2, SO2, and H2CO. We also quantify the emissions of NOx and SO2 at both measurement sites.
We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are well suited for satellite validation in principle. The signal-to-noise ratio of the airborne NO2 measurements is an order of magnitude higher than its space-borne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. However, we show that the temporal variation of the NO2 VCDs during a flight might be a significant source of comparison error. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37 σ (2.6×1016 molec. cm−2) and 29 σ (2×1016 molec. cm−2) for Bucharest and the Jiu Valley, respectively. For both areas, we simulate validation exercises applied to the TROPOMI tropospheric NO2 product. These simulations indicate that a comparison error budget closely matching the TROPOMI optimal target accuracy of 25 % can be obtained by adding NO2 and aerosol profile information to the airborne mapping observations, which constrains the investigated accuracy to within 28 %. In addition to NO2, our study also addresses the measurements of SO2 emissions from power plants in the Jiu Valley and an urban hotspot of H2CO in the centre of Bucharest. For these two species, we conclude that the best validation strategy would consist of deploying ground-based measurement systems at well-identified locations.
2020
Seabirds like gulls are common indicators in contaminant monitoring. The herring gull (Larus argentatus) is a generalist with a broad range of dietary sources, possibly introducing a weakness in its representativeness of aquatic contamination. To investigate the herring gull as an indicator of contamination in an urban‐influenced fjord, the Norwegian Oslofjord, we compared concentrations of a range of lipophilic and protein‐associated organohalogen contaminants (OHCs), Hg, and dietary markers in blood (n = 15), and eggs (n = 15) between the herring gull and the strict marine‐feeding common eider (Somateria mollissima) in the breeding period of May 2017. Dietary markers showed that the herring gull was less representative of the marine food web than the common eider. We found higher concentrations of lipophilic OHCs (wet weight and lipid weight) and Hg (dry weight) in the blood of common eider (mean ± SE ∑PCB = 210 ± 126 ng/g ww, 60 600 ± 28 300 ng/g lw; mean Hg = 4.94 ± 0.438 ng/g dw) than of the herring gull (mean ± SE ∑PCB = 19.0 ± 15.6 ng/g ww, 1210 ± 1510 ng/g lw; mean Hg = 4.26 ± 0.438 ng/g dw). Eggs gave opposite results; higher wet weight and lipid weight OHC concentrations in the herring gull (mean ± SE ∑PCB = 257 ± 203 ng/g ww, 3240 ± 2610 ng/g lw) than the common eider (mean ± SE ∑PCB = 18.2 ± 20.8 ng/g ww, 101 ± 121 ng/g lw), resulting in higher OHC maternal transfer ratios in gulls than eiders. We suggest that the matrix differences are due to fasting during incubation in the common eider. We suggest that in urban areas, herring gull might not be representative as an indicator of marine contamination but rather urban contaminant exposure. The common eider is a better indicator of marine pollution in the Oslofjord. The results are influenced by the matrix choice, as breeding strategy affects lipid dynamics regarding the transfer of lipids and contaminants to eggs and remobilization of contaminants from lipids to blood during incubation, when blood is drawn from the mother. Our results illustrate the benefit of a multispecies approach for a thorough picture of contaminant status in urban marine ecosystems. Integr Environ Assess Manag 2020;00:1–12. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
John Wiley & Sons
2020
Public Perception of Urban Air Quality Using Volunteered Geographic Information Services
Investigating perceived air quality (AQ) in urban areas is a rather new topic of interest. Papers presenting results from studies on perception of AQ have thus far focused on the individual characteristics leading to a certain AQ perception or have compared personal perception with on-site measurements. Here we present a novel approach, namely applying volunteered geographic information (VGI) technologies in urban AQ monitoring. We present two smartphone applications that have been developed and applied in two EU projects (FP7 CITI-SENSE and H2020 hackAIR) to obtain citizens’ perception of AQ. We focus on observations reported through the smartphone apps for the greater Oslo area in Norway. In order to evaluate whether the reports on perceived AQ contain information about the actual spatial patterns of AQ, we carried out a comparison of the perception data against the output from the high-resolution urban AQ model EPISODE. The results indicate an association between modelled annual average pollutant concentrations and the provided perception reports. This demonstrates that the spatial patterns of perceived AQ are not entirely random but follow to some extent what would be expected due to proximity of emission sources and transport. This information shows that VGI about citizens’ perception of AQ has the potential to identify areas with low environmental quality for urban development.
2020
2020
2020
2020
2020
2020
2020
2020
Munksgaard Forlag
2020
2020
2020
2020
2020
2020
Anthropogenic, Direct Pressures on Coastal Wetlands
Frontiers Media S.A.
2020
American Chemical Society (ACS)
2020