Found 699 publications. Showing page 21 of 30:
2020
2020
2019
Investigating the presence and persistence of volatile methylsiloxanes in Arctic sediments
Royal Society of Chemistry (RSC)
2020
2020
2020
2019
2020
Even though production and open use of polychlorinated biphenyls (PCBs) have been phased out in Western industrialised countries since the 1980s, PCBs were still present in waste collected from different waste handling facilities in Norway in 2013. Sums of seven indicator-PCBs (I-PCB7: PCB-28, -52, -101, -118, -138, -153 and -180) were highest in plastic waste (3700 ±1800 μg/kg, n=15), waste electrical and electronic equipment (WEEE) (1300 ± 400 μg/kg, n=12) and fine vehicle fluff (1800 ± 1400 μg/kg, n=4) and lowest in glass waste, combustibles, bottom ash and fly ash (0.3 to 65 μg/kg). Concentrations in leachate water varied from 1.7 to 2900 ng/L, with higher concentrations found at vehicle and WEEE handling facilities. Particles in leachate water exhibited similar PCB sorption properties as solid waste collected on site, with waste-water partitioning coefficients ranging from 105 to 107. I-PCB7 in air samples collected at the sites were mostly in the gas phase (100–24000 pg/m3), compared to those associated with particles (9–1900 pg/m3). In contrast brominated flame retardants (BFRs) in the same samples were predominantly found associated with particles (e.g. sum of 10 brominated diethyl ethers, ΣBDE10, associated with particles 77–194,000 pg/m3) compared to the gas phase (ΣBDE10 6–473 pg/m3). Measured gas-phase I-PCB7 concentrations are less than predicted, assuming waste-air partitioning in equilibrium with predominant waste on site. However, the gas-particle partitioning behavior of PCBs and BFRs could be predicted using an established partitioning model for ambient aerosols. PCB emissions from Norwegian waste handling facilities occurred primarily in the form of atmospheric vapor or leachate particles.
Elsevier
2020
2019
2020
2019
2019
American Meteorological Society
2020
2019
2020
In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/GAINS) and corresponding year-by-year meteorology derived from ERA-Interim global reanalysis. For this study, long-term observations of particle sulfate (SO2−4
), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to evaluate the model results. The trend analysis was performed for the full 21 years (referred to as PT) but also for two 11-year subperiods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2).
The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e., 1990–2000, with a 64 %–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade (P2), the models estimated a mean relative reduction in SO2 concentrations of about 34 %–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19 % and 23 % (range of all the models) during the P1 period, and 12 % and between 22 % and 26 % (range of all the models) during the P2 period, respectively.
Comparisons of observed and modeled trends in SO2−4
concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42 %–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations and with good performance also during the P2 and PT periods, even though all the models overpredicted the number of statistically significant decreasing trends during the P2 period. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO2−4
concentrations compared with their gas-phase precursor (i.e., SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry.
An analysis of the trends in TNO3 concentrations indicated a 28 %–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO−3
) concentrations revealed that the relative reduction in HNO3 was larger than that for NO−3 during the P1 period, which was mainly attributed to an increased availability of “free ammonia”. By contrast, trends in modeled HNO3 and NO−3 concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, underpredicted by all models, with worse performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic non-methane VOC (NMVOC) precursors. Biogenic emission data...
2019
Physical controls of dynamics of methane venting from a shallow seep area west of Svalbard
We investigate methane seepage on the shallow shelf west of Svalbard during three consecutive years, using discrete sampling of the water column, echosounder-based gas flux estimates, water mass properties, and numerical dispersion modelling. The results reveal three distinct hydrographic conditions in spring and summer, showing that the methane content in the water column is controlled by a combination of free gas seepage intensity and lateral water mass movements, which disperse and displace dissolved methane horizontally away from the seeps. Horizontal dispersion and displacement of dissolved methane are promoted by eddies originating from the West Spitsbergen Current and passing over the shallow shelf, a process that is more intense in winter and spring than in the summer season. Most of the methane injected from seafloor seeps resides in the bottom layer even when the water column is well mixed, implying that the controlling effect of water column stratification on vertical methane transport is small. Only small concentrations of methane are found in surface waters, and thus the escape of methane into the atmosphere above the site of seepage is also small. The magnitude of the sea to air methane flux is controlled by wind speed, rather than by the concentration of dissolved methane in the surface ocean.
Pergamon Press
2019
2019
2019
2019
Oxford University Press
2019