Jump to content

Field evaluation of Vaisala sensor systems

Project

The aim of the project was to perform a field test of three commercial Vaisala sensor system units to validate the measurements of NO2, O3, PM2.5 and PM10 against results from reference instrumentation.

The field test took place at a measuring station in Oslo, which is characterized as an urban background station. The field test lasted 3 months.

Air quality assessment for Levanger municipality

Project

NILU har utarbeidet en tiltaksutredning del I (kartlegging) for lokal luftkvalitet i Levanger. Utredningen er gjennomført på oppdrag for Levanger kommune etter anbefaling fra Miljødirektoratet.

Tiltaksutredningen gjør rede for forurensningssituasjonen og mulige tiltak for å redusere nivået av luftforurensning innenfor kravene i forurensningsforskriften.

Tiltaksutredningen omfatter en kartlegging med utslipps- og spredningsberegninger for alle relevante kilder til PM10 og PM2,5 i 2017 og 2019. I tillegg er det utført målinger av disse komponentene gjennom hele 2021 ved en målestasjon (Kirkegata) i Levanger sentrum.

Basert på resultatene fra kartleggingen, er det foreslått en handlingsplan med fire hovedpunkter som kan bidra til å redusere forurensningsnivåene i Levanger.

User-driven Health risk Assessment Services and Innovative ADAPTation options against Threats from Heatwaves, Air Pollution, Wildfire Emission and Pollen

Project

Transformative adaptation is gaining recognition as the appropriate response to climate change as the current adaptive measures reach their limits.

In addressing health risks associated with heat waves, air pollution, wildfire emission and pollen, the implementation of comprehensive transformative adaptation remains largely unreported in Europe.

healthRiskADAPT’s objective is to develop and implement a health risk assessment system for Mediterranean, Alpine and Continental regions. Its contents and tools will be in line with Climate-ADAPT described Urban adaptation support tool. This will support empowerment of local and regional authorities to make informed decisions in strategic planning, management and daily operational mitigation of health challenges related to climate change.

healthRiskADAPT will address the fundamental causes of vulnerability and implement concrete adaptation measures aiming to mitigate the health impacts of climate change. The key details of this approach include:

1) Co-creation with users of integrated transformative adaptation options encompassing technical, nature based, and social solutions, reducing the impact of climate-related risks on human health in both indoor and outdoor environments. (SO1, SO5, SO6)

2) Vulnerability assessments, health indicators, and risk indices related to climate change impact on health, considering different temporal and spatial scales. (SO2, SO3)

3) Interactive and user-friendly toolkit for local & regional authorities to assess hazards, vulnerability, and risks specific to their regions. These toolkits will facilitate the prioritization, planning, and evaluation of adaptation options. (SO4)

healthRiskADAPT will use various communication techniques (SO7) to actively engage with all stakeholders involved in the adaptation process, and develop an upscaling strategy to meet the ambitions of the Climate mission. Furthermore, we seek to enhance the preparedness of the healthcare system to respond effectively to the challenges posed by the effects of climate change.

DOI: https://cordis.europa.eu/project/id/101157458

[caption id="attachment_53972" align="alignnone" width="1037"]Floatchart for the project HealthRiskADAPT Floatchart for the project HealthRiskADAPT[/caption]

Tromsø

Air quality assessment for Tromsø

Project

NILU and Urbanet analyse have prepared a revised air quality assessment for Tromsø.

The action plan, including strategies and measures, aims to reduce air pollution to a level that meets the requirements of the regulation.

The air quality assessment covers mapping of the air quality in Tromsø through traffic, emission and dispersion calculations of PM10, PM2,5 and NO2 for the current situation in 2016 and future situation in 2023 with and without measures to combat particulate matter.

Based on the results from the calculations and in collaboration with Tromsø municipality and the working group, a revised action and emergency plan has been proposed for political consideration.

Drammen, Ypsilon bro

Revision of air quality assessment for Drammen

Project

NILU, in collaboration with Asplan Viak AS, has prepared a local air quality assessment for Drammen municipality.

The project includes an assessment of air quality in Drammen through traffic calculations and emission and dispersion calculations for airborne particulate matter (PM10 and PM2.5) for the Present situation in 2021, and future scenarios (2030) with and without measures aimed at PM emissions.

Based on the results from the calculations and in collaboration with Drammen municipality, Statens vegvesen, and Viken fylkeskommune, a revised action plan has been proposed for political processing.

Bergen

Revised local air quality assessment for Bergen

Project

NILU has prepared a revised air quality assessment for Bergen.

The assessment with an action plan for improved local air quality aims to ensure that pollution levels remain within the limits set by the Norwegian regulation. The assessment of air quality in Bergen municipality includes traffic and emission and dispersion calculations for PM10, PM2.5, and NO2 for the current situation in 2019 and the reference situation in 2030 with existing and potential new measures.

The plan evaluates the effectiveness of these measures in meeting the requirements and considers the possibility of further reductions according to the recommendations of health authorities.

Based on the results of the calculations and in collaboration with Bergen municipality, Statens vegvesen, Bergen port authority, and Vestland fylkeskommune, a revised action plan has been proposed for political processing.

Air quality assessment for Lørenskog municipality

Project

The air quality assessment for Lørenskog municipality covers mapping of the air quality through traffic, emission and dispersion calculations of PM10, PM2,5 and NO2 for the present situation (2019) and future scenarios (2030) with existing and possible future measures.

Based on the calculations and in coordination with Lørenskog municipality and the reference group, a plan for improved local air quality and a management plan for periods with high concentration levels is proposed for political processing.

Oversiktsbilde over Bergen. Sommer.

Air quality plan for improved air quality in Bergen

Project

NILU and Urbanet Analyze (UA) have prepared a revised air quality plan for Bergen city. The air quality plan will help to reduce the air pollution to a level that meets the requirements of the pollution regulations.

This revised action plan includes air quality calculations for Bergen for NO2, PM10 and PM2.5 for the present situation (2015) and scenario calculations for the year 2021 following a business as usual (BAU) emission scenario.

Mitigation scenario calculations of air quality in 2021, with the introduction of a new set of measures to control pollution levels Bergen, were also carried out.

Based on the results of the calculations and in dialogue with Bergen municipality and stakeholders, a revised 10-point action program has been proposed to be addressed politically.

GRC pilot – Enhancing Climate, Air Quality, Well-being, and Sustainable Development Goals (MASSEV)

Project

Overview

The MASSIVE project is a pioneering initiative designed to enhance health, urban living, and foster global partnerships, with a specific focus on Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 11 (Sustainable Cities and Communities), and 17 (Partnerships for the Goals). This innovative project employs a holistic nexus approach to examine the intricate relationships between climate change, air quality, health, and overall well-being. It aims to leverage and further develop cutting-edge digital tools, social solutions, and nature-based solutions (NBS) to create robust strategies for mitigating climate change and air pollution. These strategies will be crafted considering various factors such as governance, societal structures, and economic implications, ensuring a comprehensive and multi-faceted approach.

Objectives

  • Comprehensive Monitoring and Assessment: Evaluating the dynamic relationship between air quality, health, and well-being under varying climate conditions.
  • Indicator Development: Creating and implementing indicators that align with responsible research and innovation (RRI), and the SDGs, providing measurable outcomes and benchmarks.
  • Ex-post Impact Analysis: Analyzing the project's effects on various societal aspects such as social inclusion, community empowerment, attitudes towards climate change and air pollution, and overall community well-being.

Demonstration Cities

  • Jinan and Qingdao, China: These cities will serve as key sites for implementing and testing the project's initiatives, particularly focusing on urban settings in fast developing countries.
  • Santiago, Chile: As a contrast, Santiago will provide insights into the project's application in different geographical and cultural contexts, enhancing the project's global relevance.

Key Approaches and Tools

  • European Digital Citizen Engagement Tools: Utilizing advanced digital platforms to engage citizens in China and Chile, enhancing public participation and awareness.
  • Chinese Ecological Monitoring Platforms: Implementing sophisticated sensor networks and big data analytics to monitor ecological changes and air quality in China.
  • Advanced Modeling Techniques: Deploying the Community Multiscale Air Quality (CMAQ) and CityChem models, combined with machine learning algorithms and dose-response functions, to conduct in-depth analyses of environmental impacts on health.

Consortium

The project brings together a diverse array of partners, including researchers, local authorities, community groups, NGOs, and academic institutions. This collaborative approach is designed to foster societal ownership and empower stakeholders through active involvement and co-design of the project's initiatives.

Dacon – VOC-monitoring in working environment

Project

Dacon is a small production facility located in Baerum, west of Oslo, Norway. The main products are equipment for search and rescue designed for boats and maritime sector.

During the production, the company uses various types of plastic and plastic fabrics that are treated, melted and moulded into new products. This process gives emissions of VOCs (Volatile Organic Compounds) into the working environment.

In this project, samples were taken during melting and burning of plastic materials, as well as in different locations in the production facility in Baerum.

All concentrations were below the threshold values given in Norwegian legislation.

VOC-monitoring at Hydrovolt, Fredrikstad

Project

Hydrovolt is a joint venture owned by Hydro (NO) and Northvolt (SE), and the company operates a battery recycling facility in Fredrikstad, S-E Norway.

The purpose of the NILU monitoring was to quantify the levels of VOCs (Volatile Organic Compounds) at the Hydrovolt plant. The sampling took place at various steps throughout the production line.

The NILU technology to remove hydrogen fluoride (HF) was applied. If HF is not removed, HF can dissolve the TenaxTM sampling material and hence give erroneously high concentrations of VOCs.

There was also sampling of nitrogen dioxide (NO2), hydrogen fluoride (HF), ozone (O3), sulphur dioxide (SO2), formic acid (HCOOH), and acetic acid (CH3COOH) using passive samplers.

The monitoring results will be sent to Norwegian authorities (County Governor) to document components emitted from the Hydrovolt facility.

For all practical purposes, the volume flow emitted from Hydrovolt is small (55 m3/h) and the total amount emitted is regarded as minor.

Diffuse emissions of dust from LKAB Narvik

Project

NILU has, on behalf of LKAB Norge AS, carried out emission and dispersion calculations for combined emissions from point sources and diffuse sources from the facility in Narvik. The purpose of the project was to develop dispersion calculations that indicate LKAB's contribution to the pollution situation in Narvik.

LKAB Norge AS in Narvik is responsible for loading iron ore from Sweden onto ships at LKAB's port in Narvik, as well as unloading additives for transport back to LKAB in Sweden. This process involves both controlled point source emissions and emissions from diffuse sources. Several factors, including correlation between loading activity and measured deposition, suggest that the loading and unloading operation is the most significant diffuse source.

The dispersion calculations have been conducted using FLEXPART-WRF, an atmospheric dispersion model based on meteorological data from the weather forecasting model WRF. FLEXPART models particles that follow the turbulent air movements of the atmosphere and are deposited on the surface through dry and wet deposition. In this analysis, total emissions are estimated on inverse calculations from  the relationship between measured and calculated dust deposition, rather than from generic emission factors such as the EEA/EMEP air pollutant emission inventory Guidebook (2019).

This, along with an assumption about the size distribution of dust emissions, yields a resulting field of ground concentrations for PM10 and PM2.5. The concentration field can be extracted from the model at the desired time and spatial resolution.

The figure shows three snapshots of the PM10 concentration field along with the temporal variation at a given point over a period in February. A full calendar year is calculated, providing annual mean, daily mean, and hourly mean concentrations.

[caption id="attachment_52069" align="alignnone" width="1171"] The figure shows three snapshots of the PM10 concentration field along with the temporal variation at a given point over a period in February. A full calendar year is calculated, providing annual mean, daily mean, and hourly mean concentrations.[/caption]

[caption id="attachment_52067" align="aligncenter" width="1379"]LKAB LKAB in Narvik. Copyright: LKAB.[/caption]

Boliden – Diffuse emissions from unloading of zinc concentrate

Project

Diffuse emissions from the unloading of zinc (Zn) concentrate in Odda, Western Norway have been quantified using an inverse modelling approach.

Eleven deposition samplers were strategically placed around the plant with sampling period of six months, approximately one month exposure time. Metal content of deposited material in the samplers were analyzed by mass spectrometry.

The gaussian deposition model CONDEP, driven by wind data measured on site, was applied to estimate emissions of cadmium (Cd), lead (Pb), mercury (Hg), nickel (Ni), zinc (Zn), arsenic (As) and copper (Cu). These emission estimates were then used to calculate deposition onto water surfaces.

The emission rate of Zn was estimated to be 19 (between 7 and 36) g per ton unloaded mass, equivalent to 214 (150‑300) kg per 30 days. Of the total mass emitted, 40% (27-45%) were estimated deposited onto water, equivalent to 89 (40‑140) kg per 30 days.

Dispersion modeling of air pollution from Årdal Metallverk

Project

NILU has studied the effect of aluminum production on the environment around Norwegian aluminum smelters by doing calculations and measurements since the early 1970s.

In this project, surface concentrations have been calculated for SO2, dust and fluorides, as well as the metal components listed in the emission permit close to the smelter in Årdal, Western Norway.

The calculations are based on a conservative methodology (CONDEP) and the emission inventories are taken from the emissions permit as a worst-case assessment.

The mapping provides answers as to whether there is a risk of certain pollution components being exceeded, or whether the emissions indicate ground concentrations below the current limit values.

For example, the results show that the limit values for SO2 around the plant will not be exceeded by a good margin.

Norwegian initiative for EarthCARE Validation of Aerosol uncertainties and Radiation products in the Arctic

Project

The “Norwegian initiative for EarthCARE Validation of Aerosol uncertainties and Radiation products in the Arctic” (NEVAR) project aims at supporting the geophysical validation of the EarthCARE data products.

The EarthCARE (Earth Clouds Aerosols and Radiation Explorer) mission is developed by the European Space Agency (ESA) in collaboration with the Japanese Space Agency (JAXA).

Its main goal is improving the understanding of cloud-aerosol-radiation interactions and Earth radiative balance, so that they can be modelled with better reliability in climate and in numerical weather prediction models.

EarthCARE will carry four instruments:

  • ATLID (Atmospheric Lidar),
  • BBR (Broad-Band Radiometer),
  • CPR (Cloud Profiling Radar) and
  • MSI (Multi-Spectral Imager)

and will provide numerous data products, namely forty-four ESA products and eleven JAXA products. The launch is expected for April 2024.

For an overview of the EarthCARE mission see:

The NEVAR project was kicked-off 11 November 2022. It aims at supporting the geophysical validation of the EarthCARE data products. It is split in two phases:

  1. Preparatory support activities, which start now and lasting for 18 months, and
  2. EarthCARE validation activities, which will be kicked-off 9 months before launch and will end three years after launch.

The main goals and objectives of the NEVAR proposal:

  • To inventory instrumental and institutional capabilities in Arctic countries, and to engage these in the validation of EarthCARE.
  • To contribute to the formulation of best practice validation protocols for aerosol and cloud profiles.
  • To perform a global assessment of aerosol and uncertainty products from EarthCARE.
  • To evaluate radiation products for selected location in the Arctic.

Schools of a good climate – construction of educational green zones in primary schools no. 1 and no. 4 in Kozienice to mitigate climate change and adapt to its effects

Project

The GeenZone project aims to i) strengthen the resilience in the schools to the negative effects of climate change; ii) raise students and teachers' awareness of climate change; and iii) reduce greenhouse gas emissions at the local community level. To do so, the project will implement various nature-based solutions (NBS) in two schools and one public space in the city of Kozienice, including:

  1. Construction of permeable ground surfaces for water retention and managing rainwater
  2. Implementing green walls, planting appropriate non-invasive plants and fruit trees
  3. Building eco-educational space
  4. Developing educational paths and didactic gardens
  5. Creating eco-gardens, building houses for animals

In addition, various educational and awareness raising activities will be carried out, including:

  1. Awareness raising campaigns via various social media towards public
  2. Activation of the schools and local communities through direct engagement in the implementation of the NBS
  3. Training and educational activities towards schools’ teachers and students
Logo INQUIRE

Identification of chemical and biological determinants, their sources, and strategies to promote healthier homes in Europe

Project

Enabling homes to realise zero pollution holds multiple health benefits for all Europeans – especially our children. This is the goal of the EU-funded INQUIRE project.

It will provide the knowledge, tools and measures needed to significantly enhance indoor air quality. Research on hazardous determinants and their sources, risk factors and effects will focus in particular on infants and young children up to 5 years old.

The work will include non-invasive sampling and monitoring of over 200 homes in eight countries over the course of 1 month. Results will inform evidence-based recommendations and support beneficial exploitation by industry and policymakers.

DOI 10.3030/101057499

 

Inquire in social media:

Autonomous Multi-Format In-Situ Observation Platform for Atmospheric Carbon Dioxide and Methane Monitoring in Permafrost & Wetlands

Project

Climate warming is driven by increased concentrations of greenhouse gasses (GHGs) e.g., CO2 and CH4, in the atmosphere. Existing observatories are able to capture GHG information for large-scale global assessments, but short-term natural variability and climate-driven changes in atmospheric CO2 and CH4 remain less known. There is also currently a lack of sufficiently precise, autonomous, and cost-efficient GHG sensors for GHG monitoring at sufficient spatial scale, and in hard-to-reach areas.

MISO will develop and demonstrate an autonomous in-situ observation platform for use in hard to reach areas (Arctic, wetlands), for detecting and quantifying carbon dioxide and methane gasses, using a combination of stationary and mobile (drone) solutions and requiring minimum on-site intervention when deployed.

To achieve this objective, MISO will improve detection limit and accuracy of a NDIR GHG sensor, which will then be used in three observing platforms (a static tower, a static chamber and a UAV-mounted sensor) operated with the help of a central base unit. All elements will be designed for operation in harsh environments and with minimum human intervention. The static observatories will be powered by a unique geothermal device.

Communication between the three observatories and a data cloud will use a combination of P2P, G4/G5/LTE, LORAWAN and wifi technologies. The specifications of the platform will be co-developed with stakeholders from academia, monitoring and measurement systems, industry and policy.

A clear DCE strategy and focus on short-term impact management and medium and long-term commercialization will target several user groups including industries and representatives of main monitoring systems and infrastructures (e.g., ICOS). This will support innovative governance models and science-based policy design, implementation and monitoring. Sustainability performance and competitiveness in the domains covered by HE Cluster 6 will be enhanced.

Project DOI: https://doi.org/10.3030/101086541

Knowledge support for the European Climate and Health Observatory: infectious diseases and ground-level ozone

Project

The European Climate and Health Observatory (Observatory) is developed in a partnership of several European institutions and organizations. EEA maintains the Observatory, which is hosted on the European climate adaptation portal Climate‐ADAPT. The Observatory has developed into a portal that provides information on climate and human health in Europe, in response to European and national policy developments.  Impacts of climate change on health, indicators on climate and health, various information systems and tools including early warning systems on climate and health and case studies of implemented solutions are among the elements that are being developed in the Observatory.

The workplan for years 2021‐2022 of the Observatory has thematic focus on heat impacts on health and on climate‐sensitive infectious diseases, and the ClimaObs project is supporting these topics. The general objective of the project is to contribute to the Observatory by providing knowledge products suitable for inclusion in the Observatory, including visual information, descriptions, and data.

The project aims to deliver the following knowledge products:  

  • Description of occurrence in Europe for selected diseases  ii
  • Analysis of changes in disease seasonality in relation to climatic conditions for selected diseases
  • Disease forecasting outputs for pilot disease
  • Webpage on health effects of ground‐level ozone under the changing climate

Efficient Recycling of E-Waste through Automated and Intelligent Resource Dataflow

Project

The rapid technological advances with increasing application of ICT have accelerated the generation of electronic waste (e-waste). In addition, the green transition objectives under the European Green Deal advocates the utilization of renewable technologies and digital infrastructures, which will continue to increase the demand for critical raw materials, especially rare-earth elements.

Inefficient waste management systems are identified as one of the most challenging barriers in the transition to a sustainable and circular economy (CE). The lack of high-quality data from various stakeholders at the national and international levels along with the heterogeneous nature of e-waste makes the challenge of regulating and supporting e-waste management systems a daunting task for the authorities. In addition, insufficient information about the quantity of e-waste, diversity of products, and resources quality have created multi-dimensional e-waste management challenges for authorities at the local, national, and international levels.

We propose REWARD, an integrated information infrastructure, that aims at systematically identifying reusable and recyclable materials in e-waste products while determining the associated social, environmental, and economic (SEE) dimensions of circularity interventions. In REWARD, the data on e-waste generation and e-waste resources, along with SEE parameters will be fed to the integrated information infrastructure to facilitate automated data sharing and identifying optimal e-waste resources recycling options among e-waste actors. In addition, REWARD provides predictive resource planning and policy recommendations for the improvement of e-waste resource recovery in the future.

The project REWARD addresses the following thematic priorities:

  • resource-efficient ways of covering consumer needs
  • increased material recycling and use of recycled materials
  • identifying barriers and solutions to circular business models and value chain

Airborne Microplastic Detection, Origin, Transport and Global Radiative Impact

Project

The project with the short name "MAGIC" will incorporate advances in atmospheric sampling (e.g., from Global Atmosphere Watch stations, GAW) and detection of microplastics (e.g. long timeseries of measurements) into atmospheric dispersion and inverse modelling algorithms.

This will allow for accurate determination of their atmospheric levels, precise quantification of their sources and reliable constrain of their atmospheric budget.

Important processes affecting the atmospheric dispersion of microplastics will be carefully studied (e.g., turbulence- induced resuspension and oceanic ejection, non-spherical particle modelling) and modelled for the first time.

The obtained knowledge will be used to answer the primary objective of MAGIC for the role of microplastics in the global radiative budget at present and future years.

Our inter-disciplinary team is in a unique position to assess the state of atmospheric microplastic emissions and dynamics and their impact on Earth’s radiative balance. This will enable a targeted approach to investigation and monitoring of atmospheric microplastic signals in atmospheric data and dispersion models.

Primary objective

The primary objective of MAGIC is to investigate sources and sinks of atmospheric microplastics transported to remote regions through the atmosphere and their subsequent climate feedback.

Secondary objectives are to:

  1. Develop FLEXPART model in order to account for non-spherical structures (microfibers).
  2. Develop an inverse modelling algorithm that will be used for source quantification of atmospheric microplastics.
  3. Identify source origin of atmospheric microplastics deposited in snow and ice in high northern latitudes.
  4. Develop and ingest a module into FLEXPART for the resuspension of atmospheric microplastics (grasshopper effect, large-eddy simulations).
  5. Create protocols of standard operating procedures for sampling of atmospheric microplastics in PM10.
  6. Develop an analytical determination methodology for atmospheric microplastics (TED-MS, TD-PTR-MS).
  7. Define the climatic role/impact of atmospheric microplastics at present and future times (radiative transfer modelling).

Quantification of Global Ammonia Sources constrained by a Bayesian Inversion Technique

Project

Nitrogen is a basic component of life and it is present both in proteins and DNA. Its basic chemical form in nature is the non-reactive gaseous N2.

However, in the 20th Century humans converted N2 into more reactive forms. Today, NH3 (ammonia) sustains life and almost 40% of the global population owes its life to NH3 through the use of fertilisers' in food production. Though, implications of ammonia for population and environment have received a lot of attention in the last decades.

On one hand, its presence in the atmosphere in low concentrations is beneficial as it makes the rain less acidic by neutralising sulphuric acid aerosols. On the other hand, increased emissions of NH3 result in reactions with sulphuric and nitric acids contributing 30%-50% to the total PM2.5 and PM10 mass.

Enhanced production of ammonium aerosols can cause premature mortality as they penetrate human respiratory system and deposit in the lungs. Furthermore, ammonium aerosols affect the Earth's radiative balance, both directly by scattering incoming radiation and indirectly as cloud condensation nuclei causing a positive climate feedback (warming).

Despite its importance, NH3 is one of the most poorly quantified gases with a limited number of continuous ammonia measurements in Europe, America or Asia.

However, the lack of observations is covered by satellites and nowadays satellite algorithms are advanced enough to provide daily global concentrations of atmospheric NH3.

We use the existing knowledge of Lagrangian dispersion modelling and Bayesian inversion in NILU accompanied by continuous and satellite measurements to quantify regional (Europe) and global emissions of NH3.

The optimised fluxes of NH3 are studied and the impact to the environment and the population is examined. The methodology is designed to maximize the utility of empirical data for the least understood aspects and use models for source identification, which cannot be inferred from measurements alone.

The main points of COMBAT's developments and progress:

(Publications - see below.)

- The coupling of FLEXPART model with the Kinetic PreProcessor (KPP) to account for chemistry has resulted in a Conference publication (16th IGAC Scientific Confeence). A publication will be lead by the University of Bremen.

- The methodology to calculate NH3 emissions from satellite measurements was adapted to the needs of LSCE and this has resulted in a Conference publication (16th IGAC Scientific Confeence). A publication on this will be lead by the LSCE .

- Satellite measurements of NH3 from CrIS product are being processed to the inverse modelling framework. This will result in a publication focusing in Europe using the new reanalysis product from ECMWF (ERA5).

UV Intercomparison and Integration in a High Arctic Environment

Project

The Arctic is a region which to high extent influences the atmospheric behaviour in the Northern hemisphere and for this reason attracts the attention of the scientific community. The Atmosphere Research Flagship Programme (http://nysmac.npolar.no/research/flagships/atmosphere.html) is an activity aimed to unite the efforts of scientists working in different fields of polar atmospheric research.

An important task of this activity is the study of solar UV radiation and ozone column that are considered important parameters for both climatic studies and biophysical examination of ecosystems. Several observational stations based in Ny-Ålesund, Hornsund and Barentsburg perform measurements of these parameters on a long-term basis.

The objective of the present proposal is to create the basis for their integration into a regional monitoring network, which will also lead to a closer cooperation of the researchers involved in these activities. Since the technical features of the current instrumentation at the stations involved are quite diverse, it is important to compare their ability to provide reliable and homogeneous data sets.

For that reason, an intercomaprison campaign planned in the frame of the proposed activities is considered an important element for the establishment of a Svalbard UV network. Another significant goal is the joint analysis of the available data and elaboration of common data format and data processing strategy for the future network that will provide a homogeneous data set. It is expected that the results achieved in the frame of the present proposal will contribute to more realistic conclusions made by the climatological and biophysical studies.

Plastic pollution; global sources causing consequences for the Arctic, Towards international state-of-the-art understanding and education

Project

Being a fast developing field of research of increasing complexity, education and training on the impact and fate of MP pollution is lacking behind both in teaching state-of-the art research as well as methodology.

After 2 years of the first phase project PlastPoll, this objective has become even more crucial, acting on the increase of available methodology and understanding of the impacts of nano- and microplastic pollution, as a global challenge impacting even remote and fragile regions as the Arctic.

An overall goal is to train students in combining theoretical, experimental and field approaches for an excellent and sound scientific understanding of relevant processes and observations while at the same time contributing to the understanding of the fate and impact of MPs in the environment by developing this still young field of research on a global scale together.

An invaluable added value to the underlying JPI projects ANDROMEDA and FACTS will result in the evolution of the scope from temperate regions to arctic and high arctic regions. The continuation of the successfully established collaboration between Norway, China and USA will support the strong interaction between not only the supervisors, but also the students themselves. They will be both encouraged and facilitated by exchange visits, webinars and winter-/ summer schools including from the ANDROMEDA and FACTS consortia.

We will additionally offer master student projects in all three locations, which will create additional opportunities for students to participate in specific parts of this project.

At the same time, the exchange of experts will ensure the direct transfer of recent knowledge, leading on arctic research of MP in the environment.

The unique combination of participating research institutions (NILU, NPI) and universities (UiT, UCSF, TU) is complementary in scientific quality, academic programs, experience and qualification.