Jump to content

Circular Economy Resource Information System


The rising demand and limited supply of critical raw materials (CRMs) impair the ability to rapidly adopt technological change toward green and sustainable technologies, which directly affect the resilience of EU industries seeking to achieve Green Deal objectives for an equitable, zeroemission, and digitalized Europe.

In response to these challenges, the European Commission aims to minimize the loss of secondary raw materials (SRM) and optimize their reuse across value chains.

CE-RISE will develop and pilot an integrated framework and an ensuing resource information system to identify optimal solutions for the effective reuse, recovery, and/or recycling of materials by

  1. defining a set of criteria (RE criteria) to evaluate the extent to which products and embedded components can be reused, repaired, refurbished and/or recycled;
  2. incorporating information on RE criteria and material composition of products into the Digital product passport (DPP) to enable traceability of materials in the supply chain;
  3. integrating DPP with information on the environmental footprint of products (PEF), socio-economic and environmental (SEE) impacts of RE processes;
  4. enabling confidential and anonymized information sharing among actors throughout value chains;
  5. providing open access software application to disseminate information on the assessment of RE criteria, PEF and SEE impacts of products to all stakeholders including consumers and policymakers.

The results will be piloted on four case studies. CE-RISE will contribute to bridging the digital divide in society by supplying affordable second-hand ICT devices, and supporting access to digital education and job opportunities. Ultimately, CE-RISE will foster a dynamic ecosystem geared toward prolonging the use of materials in the economy and stimulating circular business models to reduce waste generation while optimizing the reuse of SRMs.

Read more about the project in the news article at NILU web

DOI: https://doi.org/10.3030/101092281

Development of Environmental performance and Climate Impact indicators for the Assessment of Sustainability


The DECIAS project is aimed at developing a modelling toolbox for environmental sustainability assessment based upon Life Cycle Assessment (LCA), dynamic Material Flow Analysis (MFA), and multiregional Input Output Analysis (MRIO).

The production, trade, and consumption of goods and services leads to significant impacts on the climate, environment and human health. The adoption of technological innovations or policies and measures targeting sustainable development can be aided by a systemic sustainability assessment that checks that actions are economically sound and do not come at increased environmental and social cost compared to the present situation. In fact, for many actions it is often possible to identify co-benefits across a range of economic, environmental and social indicators.

The DECIAS project aims to develop a multidisciplinary modeling framework and toolbox to better understand environmental impacts driven by economic activity and consumption. The framework will be based on Material Flow Analysis (MFA), Life Cycle Assessment (LCA) and multiregional Input-Output (MRIO) assessment. It captures the release of pollutants from human activities through the entire life cycle of materials, and leverages NILU’s experience in modelling pollutant transport through the environment.

Results will enable the comparative assessment of innovations, policies and measures for a transition to a green and circular economy, by estimating the associated social, environmental and climate costs and benefits.

The framework and tools will be developed through a series of case studies to test and demonstrate proof-of-concept. The project will focus on identifying impacts related to the cross-cutting topic climate-energy-land-water signified by UN SDGs 6, 7, 13, 14, 15 and relate to SDGs 3 on health and 12 on sustainable consumption and production.

[caption id="attachment_14339" align="alignnone" width="1024"]Figure illustrating the life cycle Life cycle[/caption]

Air quality profiling using low-cost gas and particle sensors


Airify is an industrial innovation project where NILU will contribute to evaluate the performance of novel low-cost sensor systems developed by LASTING Software. During the project we will test Airify sensor systems both in laboratory and in the field.

Climate gas emissions from tourist mobility in Norway


This is a project for Innovation Norway to estimate the CO2 emissions of transport from the movement of tourists to, in and from Norway.

Emissions are calculated from detailed input data, separating both origin destination and purpose of travel.

A key outcome of the project has been an emission calculator designed to provide useful information on emissions by different types of tourists for a destination.

Additionally, the project aims to provide an overview of total emissions for all tourist travels in Norway.

SO2 measurement in the surroundings of Elkem Carbon and REC Solar


Measuring of SO2 in the residential areas around the companies Elkem Carbon and REC Solar at Fiskå / Kristiansand.

SO2 is measured in the residential areas around the companies Elkem Carbon and REC Solar at Fiskå / Kristiansand. An SO2 monitor is located in the residential area which, according to dispersion calculations, is most affected by the emissions from the companies. In addition, passive samplers are located in inhabited areas around the company. The measurements last for at least a whole year to cover a wide range of meteorological conditions that can occur during a year, and which largely affect the dispersion of emissions and spatial distribution of SO2. The distribution of SO2 and its concentration level are assessed with regard to the requirements in the Pollution Control Regulations and are assessed together with local meteorological measurements. The measurement program will help to map the extent of any exceedances around the industrial companies.

Air quality assessment in the surroundings of aluminium smelters


The effect of aluminium production on the environment surrounding aluminium smelters has been studied over several decades. NILU has studied their effects on air quality both in measurements and modelling studies since the early 1970s. The “Effect Study” in the beginning of the 1990s gave an overview over the effects of aluminium production on vegetation, water, farm and game animals and human health.

ESPIAL (Ensuring the Environmental Sustainability of production of PrImary Aluminium) is a multidisciplinary study initiated and sponsored by “Aluminiumindustriens Miljøsekretariat” (AMS) to update and supplement the Effect Study. The project covers data back to the early 1990s.

The main aim of the project is to advance the knowledge regarding the environmental consequences associated with emissions to air from the production of primary aluminium from the production technologies available today. The aim is achieved through the assessment of the effect of historical emissions on air quality in the past, involving a literature review of data from ten aluminium smelters in Northern Europe, (WP1) and measurement of the most relevant air pollutants emitted during aluminium production in the surroundings of two selected aluminium smelters, Hydro Sunndal (WP2) and Alcoa Lista (WP3). The outcome from these activities will contribute to knowledge creation at the Al-industries and to secure sustainability of the aluminium industry in Northern Europe.

In order to establish up-to-date knowledge on the ambient air quality status in the surroundings of aluminium plants today, field campaigns were carried out at selected smelters. The ten smelters participating in the ESPIAL project are placed at locations largely differing regarding dispersion conditions, population exposure, topography etc. This makes it difficult to conclude on the situation around other smelters based on measurements at only one distinct location. Lista and Sunndal were indicated as suitable sites, one located in a flat area at the coast, the other in a topographically complex terrain. Two separate sampling campaigns are carried out.

Yellow bulldozer

Method development for estimating emissions from construction sites


The overall aim of our study is to develop a concept model to estimate emissions (the following components are included:  CO2, BC, CH4, NH3, NMVOC, PM10, PM2.5 and NOx) from construction activity based on bottom-up principles.

Such a model will allow for estimates of emissions at different levels, i.e., from the individual construction site to municipality and up to national level.

To our knowledge, there is no existing modelling approach that provides this information nor any prior assessment of comprehensive basis for its development. The most critical aspect for designing such an approach is the availability of reliable input data that allows defining the activity that generates emissions and their spatial and temporal distribution.

In the first phase of the project, the aim is to map the available input data, evaluate them and set up the basis for a potential bottom-up emission model for NRMM in building and construction. The second phase is to develop a model that provides high resolution emissions from construction activity in Norway.

Cross-cutting topics on urban sustainable development and SDGs


This SIS-project is designed in a close collaboration between NILU and NIVA with an overall objective to develop a methodological framework which can help with structure thinking and provide a systematic approach to the analysis of urban environmental sustainability.

The methodological framework will be developed based on the EEA’s urban sustainability conceptual framework and linking to UN Sustainable Development Goals (SDGs), e.g., including the city context, key enabling factors, urban lenses and building blocks for urban sustainable development.

The following key specific thematic topics and research questions will be addressed in the project:

Nature-based solutions

  • How to support cities towards more effective mitigation and adaptation to climate change?

Assessment of environmental contaminants in the urban environment

  • How does the composition of environmental contaminants in the urban environments change, e.g., as a result of urbanization, climate change and sustainable measures?

Behavioral change and citizen engagement

  • How to improve human behavior to minimize emissions and pollution exposure?

Well-being and health

  • How to improve health and well-being by innovative solutions in urban sustainable transitions?

The SIS-project has been broken down into the following three working groups (WG).

  • WG1 – Environmental contaminants
  • WG2 – Operationalization of UN SDGs & measurement of urban sustainability
  • WG3 – Assessment of municipal needs

The project results are expected to

  • facilitate different forms of analysis and assessment of urban environmental sustainability that will help decision-makers to identify policy options and priorities; and
  • underpin and support a transition to urban environmental sustainability.

Glutamate Oxaloacetate Transaminase Nanoparticles targeted to the Brain for Neuroprotection in Ischemic Stroke


The project will develop and test the first targeted and long-acting nanomedicine with neuroprotective properties for ischemic stroke, with potential application in other neurological diseases.

The Team will demonstrate that the targeted delivery of a long-acting glutamate oxaloacetate transaminase (GOT) nanoparticle to the brain in order to enhance the neuroprotective character of GOT (i.e., prevention of neuronal apoptosis and cell death) in a model ischemic stroke. Systemically administered GOT has been demonstrated to deplete blood glutamate levels, which in turn causes an efflux of excess glutamate from the brain.

One major shortcoming of this approach is that the systemic effect of GOT on brain glutamate concentration is short-lived (~1 h), mainly because of its rapid elimination from the body. The project will: i) increase the circulatory half-life of GOT and ii) target GOT to- or near to- the ischemic region of the brain where GOT can exert its therapeutic catalytic activity. These objectives will be met by preparing a Blood-Brain-Barrier (BBB)-targeted nano-formulation of GOT (GOT-NP).

What is particularly original in this strategy is that accumulation of GOT-NP at the blood-side of the BBB will promote the efflux of glutamate from the brain by increasing the glutamate gradient on either side of the BBB. As such, GOT-NP does not actually have to cross the BBB to produce an enhanced neuroprotective effect. Crossing the BBB, which is substantially more challenging, would represent an added bonus of selectively depleting glutamate in the cerebrospinal fluid.

In addition to the design and synthesis of GOT-NP, this project will investigate and validate iii) the mechanism of in vitro neuroprotection as well as iv) the in vivo biodistribution and neuroprotective effect of GOT-NP in an animal model of ischemic stroke, in order to conclude pre-clinical studies and place the Team in a position to embark on clinical testing.

Nordic participatory, healthy and people-centred cities


NordicPATH’s overall objective is to establish a new model for citizens’ participation and collaborative planning in Nordic countries to create healthy and people-centred cities. The project is tackling complex environmental impacts such as air quality and climate change and is developing a method specifically targeted for the governance and the conditions of the Nordic countries with potential replicability and scalability to other countries.

NordicPATH aims at smart and sustainable solutions with a citizen-oriented approach. Technology will not be considered as a goal itself, but as a tool to increase accessibility to different societal groups, to stimulate the circular exchange of knowledge among citizens, public authorities, private sector and scientists and to foster system innovation towards sustainable development.

We will apply a co-monitoring system, combining environmental measurements from official monitoring stations and citizens’ own measuring devices. NordicPATH is also promoting more inclusive planning processes, involving citizens in the co-design of solutions to tackle environmental issues together with urban planners, authorities and scientists. We will combine the use of more traditional analogue participation tools as workshops and focus groups with the use of digital tools, in particular, PPGIS (public participation Geographical Information Systems), to ensure a broad range of public involvement.

NordicPATH will develop a participation method based on community activities and identity-establishing tools. This will allow for a new participative planning culture in the Nordic countries that will not just reflect the democracy that the Nordic countries represent in the world, but also the progress towards deliberative democracy, involving and shaping important local and global issues (such as air quality) together with citizens’ input on decisions. Participation in improving urban air quality is the NordicPATH strategy towards a liveable, resilient and smart urban environments.

Participatory science toolkit against pollution


ACTION will transform the way we do citizen science (CS) today: from a mostly scientist-led process to a more participatory, inclusive, citizen-led one, which acknowledges the diversity of the CS landscape and of the challenges CS teams have to meet as their project evolves.

We have partnered with 5 European CS initiatives tackling major forms of pollution, which pose substantial threats to human health and to the environment, and contributing to Sustainable Development Goals. These pilots will be the starting point for a ‘citizen science accelerator’, which will be expanded through an open call.

By considering the needs of multiple stakeholders throughout the lifecycle of CS, we will create methodologies, tools and guidelines to truly democratise the scientific process , allowing anyone to design and realise a CS project from the early stages of ideation to validating and publishing the results.

Our research will account for the multitude of manifestations of CS, addressing everything from from small-scale, localised social issues to international research agendas. All ACTION’s outputs - infrastructure, the citizen science platform and toolkit - will be made openly available for online and offline use. They will use accessible formats and interfaces, which appeal to audiences with diverse motivations and backgrounds and provide detailed examples, workflows, and advice tailored for a range of activities, going beyond data collection and analysis.

Our digital infrastructure will help citizen scientists use existing specialised platforms and publish results according to RRI principles, including open science.

Our toolkit will tackle common difficulties around methodological choices, quality, incentives, community building and sustainability. In addition, the 35 pilots hosted by the accelerator will result in case studies that will demonstrate the impacts of CS at social, economic, environmental and policy level.

Collective awareness platform for outdoor air pollution


The overall objective of hackAIR is to develop and pilot test an open platform that will enable communities of citizens to easily set up air quality monitoring networks and engage their members in measuring and publishing outdoor air pollution levels, leveraging the power of online social networks, mobile and open hardware technologies, and engagement strategies. The hackAIR platform will enable the collection of data from:

  • measurements from existing air quality stations and open data
  • user-generated sky-depicting images (either publicly available geo-tagged and time-stamped images posted through social media platforms, or images captured by users
  • low-cost open hardware devices easily assembled by citizens using commercial off-the-shelf parts

A data fusion algorithm and reasoning services will be developed for synthesising heterogeneous air quality data into air quality-aware personalised services to citizens.

The hackAIR platform will be co-created with the users, and offered through:

  • a web application that communities of citizens will be able to install and customize
  • a mobile app that citizens can use to get convenient access to easy-to-understand air quality information, contribute to measurements by an open sensor, or by taking and uploading sky-depicting photos, and receive personalised air quality-aware information on their everyday activities

The hackAIR platform will be tested in two pilot locations, with the direct participation of a grassroots NGO with >400.000 members and a health association with >19.000 members. Appropriate strategies and tools will be developed and deployed for increasing user engagement and encouraging behavioural change.

The usability and effectiveness of the hackAIR platform, and its social and environmental impact will be assessed. A sustainability and exploitation strategy will pave the way for the future availability of the hackAIR toolkit, community and website, and explore opportunities for commercial exploitation.

NILU led the pilot study in Norway and the development of the data fusion tool.

Development of sensor-based Citizens’ Observatory Community for improving quality of life in cities


The CITI-SENSE project developed and tested components of environmental monitoring and information systems based on innovative and novel Earth Observation capabilities. The applications focused on the citizens’ immediate environment regarding urban air quality, environmental quality of urban public spaces and indoor air quality in schools.

The CITI-SENSE approach was to develop “Citizens’ Observatories” (COs), a collaborative concept that focuses on the empowerment of citizens to influence their community policy and decision-making. Several novel technologies, especially a variety of micro sensors, mobile applications and communication solutions, enabled this approach technically.

The concept of CITI-SENSE citizen observatories rested on realizing the chain “sensors-platform-products-users” with the following elements: technologies for distributed monitoring (sensors); information and communication technologies (platform); information products and services (products); and citizen involvement in both monitoring and societal decisions (users). The main novel contributions were:

  • Studies of motivations and barriers to citizen involvement with environmental decision making
  • Development of tools for citizens monitoring of urban environment
  • Deployment of low-cost micro sensor devices and innovative data fusion and scientific analyses
  • Combining new sensing technology, ICT Cloud platform with IoT, Big Data and App/Portal services and participatory methods in products and services.

To demonstrate the CO concept and capabilities, we established and for over six months, operated the largest ever sensor network for air quality comprising of 324 units deployed across Europe. We involved nearly 400 volunteers in nine cities to test our personal monitoring devices. We established 24 individual COs (8 COs for outdoor air quality, 12 COs for indoor air quality in schools and 4 COs for personal comfort in public spaces) in the following nine cities across Europe: Barcelona (ES), Belgrade (RS), Edinburgh (UK), Haifa (IL), Ljubljana (SI), Oslo (NO), Ostrava (CZ), Vienna (A) and Vitoria-Gasteiz (ES). We involved volunteers in co-development of sensor devices, visualisation solutions and other tools used in the project. Our air perception app was downloaded and actively used by more than 1200 persons. With the help of the sensor network and additional observation tools, we collected more than 9.4 million observations in the last year of the project.

In any decisions, people need to be in focus. We developed and applied participatory methods for each individual CO. We collected citizens’ feedback on environmental issues through evaluation questionnaires and in-depth focus group discussions and interviews. We have also collected feedback on our tools and services. The results have also helped the tools’ providers to improve their products and we can provide a list of lessons learned to support similar initiatives within Citizens’ Observatories and Citizen Science. The resulting products and services are available through the Citizens’ Observatories Web Portal (http://co.citi-sense.eu).

CITI-SENSE operated within an open e-collaboration framework with projects funded under the same call. Methodologies and standards for data archiving, discovery and access within the GEOSS framework were coherent with initiatives such as GEO, INSPIRE and GMES. CITI-SENSE also made CO information available through the GEOSS infrastructure.

NILU was the project coordinator and WP lead for Citizens’ Observatories. NILU led the CO on air quality in Oslo and the CO on indoor climate in schools.

Utvalgte publikasjoner før 2018:

Oslo Citizens' Observatory. Results from the Oslo Empowerment Initiative as part of the CITI-SENSE project.

Castell, N. & Grossberndt, S.

CITI-SENSE. Final report on methodology. Deliverable 6.4, Work Package 6.

Fredriksen, M., Bartonova, A., Kruzevic, Z., Kobernus, M., Liu, H.-Y., Santiago, L., Schneider, P., & Tamilin, A.

CITI-SENSE. Citizens' observatories - version 1. Deliverable D4.3.

Liu, H.-Y. (Ed.) Bartonova, A., Berre, A., Broday, D., Castell, N., Cole-Hunter, T., Fredriksen, M.F., Grossberndt, S., Høiskar, B.A., Holøs, S.B., Kobernus, M., Keune, H., Liu, H.-Y., Robinson, J., Santiago, L., & Soloaga, I..A.

Hyperlocal precipitation forecast everywhere in the world on a simple demand?


The PrecX project will develop a forecast service that provides highly accurate, hyper-local, and on demand precipitation prediction everywhere in the world.

PrecX will be a ready-to-go digital solution for hydropower-related companies to easily get a tailor-made precipitation forecast. Hydropower companies are dependent on the accuracy of hyper-local precipitation forecast as this is crucial information used to establish the inflow of water to rivers or reservoirs, consequently establishing the right pricing of produced electricity. The energy market is increasingly digital, and PrecX will be a lower cost solution that provides accurate forecasts based on different data sources.

This milestone project will prepare PrecX for full-scale development, and address the R&D challenges of making an operationally viable forecast, as well as investigate the potential business model for PrecX.

Plastic pollution; a global challenge towards harmonised understanding, education and methodology in Europe, USA and China


Being a fast developing field of research of increasing complexity, education on the impact and fate of MP pollution is lacking behind both in teaching, state-of-the art research as well as methodology.

An overall goal is to train students in combining theoretical, experimental and field approaches for an excellent and sound scientific understanding of relevant processes and observations while at the same time contributing to the understanding of the fate and impact of MPs in the environment by developing this new emerging field of research on a global scale together. An invaluable added value to the underlying JPI projects PLASTOX and BASEMAN will result in the evolution from the European to global scale as well as to broaden the scope from marine to also terrestrial MP pollution.

A strong interaction between not only the supervisors, but also the students will be both encouraged and facilitated by exchange visits, webinars and winter-/ summer schools. We will additionally offer master student projects in all three locations, which will create additional opportunities for students to participate in specific parts of this project.

At the same time, the exchange of experts will ensure the direct transfer of recent knowledge and understanding as well as help to develop a strong consortium, leading on global research of MP in the environment. The unique combination of participating research institutions (NILU, NPI) and universities (UiT, UCB, TU) is complementary in scientific quality, academic programs, experience and qualification.

Our collaborative educational project combines experienced scientists and educators (from different relevant disciplines), in an innovative project addressing the urgent need of knowledge on how MP move in the environment, harm organisms and how possible remediation actions can be designed.

Fluxes and fate of microplastics in Northern European waters


The project FACTS will create new knowledge and improve our understanding on the sources, transport, occurrence, and fate of small microplastics (MP) in the northern marine waters. FACTS will combine newest methods to describe transport and geographical sources of microplastics contamination. We will also investigate where microplastic particles will end up both in temperate waters of the southern North Sea and the Arctic waters of the Barents Sea.

Integrated Risk Assessment Framework for Evaluating the Combined Impacts of Multiple Pressures on Arctic Ecosystems


The primary objective of this proposal is to develop, explore, and evaluate a novel integrated risk assessment framework for assessing combined impacts of multiple pressures on the state of Arctic ecosystems. The focus herein will be upon data-rich pressures and ecosystems to enable development and a thorough evaluation of the framework.

Arctic ecosystems are subject to multiple pressures, of which two of the major challenges are climate change and exposure to long-range transported, persistent, bioaccumulative, and toxic contaminants.

These issues have largely been addressed individually, yet there is a critical need to enhance the understanding of combined impacts of multiple pressures and their interactions on Arctic ecosystem state and health. This calls for better integration of research both within and across disciplines in a comprehensive research initiative.

The primary objective of this proposal is to develop, explore, and evaluate a novel integrated risk assessment framework for assessing combined impacts of multiple pressures on the state of Arctic ecosystems.

The focus herein will be upon data-rich pressures and ecosystems to enable development and a thorough evaluation of the framework.

Hence, the initial focus will be on interacting effects of environmental organic contaminants and climate change on top-predators of a coastal and an offshore Arctic marine ecosystem in the Svalbard and Barents Sea areas.

Important sub-goals include research to

(1) develop the framework through evaluating existing knowledge of the most relevant pressures and their interactions,

(2) explore the utility of the framework to assess interactions of contaminants and climate change on the state of two selected Arctic marine ecosystems,

(3) explore the utility of the framework to assess combined impacts across ecosystems, space, and time, and

(4) evaluate the overall framework, guide further research, and communicate key results to regulatory bodies and institutions.

Overall, the project is designed to both

(i) strengthen research on critical Arctic environmental issues across disciplines and institutions, and

(ii) contribute with scientific knowledge and possible mitigation strategies of interest to relevant environmental agencies as well as international programs and agreements.


Used tires in asphalt production – Feasibility Study


How should we best dispose of our used car tires? The RubberRoad project addresses the responsible use of tires, stimulating the production of asphalt with rubber content in Norway.

Used tires represent a significant waste problem both globally and in Norway, with ca 60,000 tons of tires been discarded in our country every year. It is not allowed to dump used tires in a landfill. Instead, tires are burned for energy or recycled for their material like for use to fill artificial soccer fields. However, the waste treatment methods for used tires currently used in Norway leads to serious environmental and climate effects, including harmful emissions of micro-plastics and chemicals to water, air, and soil. Therefore, alternative more sustainable ways to dispose of our used tires need to be considered.

RubberRoad proposes to use rubber from used tires in the production of asphalt for road and bicycle ways. This recycling approach has not gained much attention in Norway despite is apparent advantages, such as noise reduction, increased durability, safer shock impact, and reduced climate and environmental impacts.

The Life Cycle Analysis carried out during this project feasibility study has demonstrated a series of environmental benefits in the use in the use of rubber in asphalt production. It has also helped identify relevant knowledge gaps related in particular to the use phase of the rubberized asphalt and its impact to noise, air and micro-plastic pollution. Better understanding of these effects would probably result in even larger environmental benefits of rubberized asphalt with respect to standard asphalt production.

However, while the tire recycling industry is generally positive to the disposal of used tires in asphalt production, additional incentives need to be put in place for the Norwegian asphalt producers to consider actively contributing to this development.

Science-based risk governance of nanotechnology


Engineered nanomaterials (ENMs) are covered by REACH/CLP regulations; the general opinion is that the risk assessment (RA) approach routinely used for conventional chemicals is also applicable to ENMs. However, as acknowledged by OECD and ECHA, the OECD and ISO Test Guidelines (TGs) and Standard Operating Procedures (SOPs) need to be verified and adapted to be applicable to ENMs.

Engineered nanomaterials (ENMs) provide the opportunity for breakthroughs in health care, chemical and technology industry. However, ENMs' unpredictable impact on human health generates increasing concern from the public, academia, and governments worldwide.

ENMs are subject to REACH/CLP regulations. The test procedures need to be verified and adapted for specific use for ENMs (OECD and ISO Test Guidelines (TGs) and Standard Operating Procedures (SOPs)). The national legal frameworks and the international regulations need to be harmonized. RiskGone, a newly financed H2020 project (H2020-NMBP-13-2018 RIA), aims at providing solid procedures for science-based inter-disciplinary risk governance, based on a clear understanding of risks, risk management practices and the societal risk perception by all stakeholders.