Found 9889 publications. Showing page 104 of 396:
Preliminary assessments under the 4th daughter directive. ETC/ACC Technical paper 2007/10
2007
Preliminary assessment report on the spatial mapping of air quality trends for Europe. ETC/ACC Tecnical paper, 2008/3
2008
Preliminary assessment of air quality in Norway, according to the new EU air quality directives. NILU OR
1999
2001
2000
1999
Prelimenary assessment of air quality in Norway according to the new EU air quality directives.
Supplementary measurements of particulate matter (PM) and nitrogen dioxide in Lillehammer and Tromsø during the winter season 2000.
2000
2003
2014
2012
Poor Indoor Environmental Quality (IEQ) in schools significantly impacts students’ well-being, learning capabilities, and health. Perceived dissatisfaction rates (PD%) among students often remain high, even when indoor environmental variables appear well-controlled. This study aims to predict perceived dissatisfaction rates (PD%) across multi-domain environmental factors—thermal, acoustic, visual, and indoor air quality (IAQ)—using machine learning (ML) models. The research integrates sensor-based environmental measurements, outdoor weather data, building parameters, and 1437 student survey responses collected from three classrooms in a Norwegian school across multiple seasons. Statistical tests were used to pre-select relevant input variables, followed by the development and evaluation of multiple ML algorithms. Among the tested ML models, Random Forest (RF) demonstrated the highest predictive accuracy for PD%, outperforming multi-linear regression (MLR) and decision trees (DT), with R² values up to 0.91 for overall IEQ dissatisfaction (PDIEQ%). SHAP analysis revealed key predictors: CO₂ levels, VOCs, humidity, temperature, solar radiation, and room window orientation. IAQ, thermal comfort, and acoustic environment were the most influential factors affecting students' perceived well-being. Despite limitations as implementation in building level scale, the study demonstrates the feasibility of deploying predictive ML models under real-world constraints for improving IEQ monitoring system. The findings support practical strategies for adaptive indoor environmental management, particularly in educational settings, and provide a replicable framework for future research. Future research can expand to other climates, buildings, measurements, occupant levels, and ML training optimization.
Elsevier
2025
2005
2019
2008
2019
The blood enzyme glutamate-oxaloacetate transaminase (GOT) has been postulated as an effective therapeutic to protect the brain during stroke. To demonstrate its potential clinical utility, a new human recombinant form of GOT (rGOT) was produced for medical use.
We tested the pharmacokinetics and evaluated the protective efficacy of rGOT in rodent and non-human primate models that reflected clinical stroke conditions.
We found that continuous intravenous administration of rGOT within the first 8 h after ischemic onset significantly reduced the infarct size in both severe (30%) and mild lesions (48%). Cerebrospinal fluid and proteomics analysis, in combination with positron emission tomography imaging, indicated that rGOT can reach the brain and induce cytoprotective autophagy and induce local protection by alleviating neuronal apoptosis.
Our results suggest that rGOT can be safely used immediately in patients suspected of having a stroke. This study requires further validation in clinical stroke populations.
2024
2014
2012
Potential use of CAMS modelling results in air quality mapping under ETC/ATNI
ir quality European-wide annual maps based on the Regression – Interpolation – Merging Mapping (RIMM) data fusion methodology have been regularly produced, using the Air Quality e-Reporting validated (E1a) monitoring data, the EMEP modelling data and other supplementary data. In this report, we examine the use of the preliminary (E2a) monitoring data as provided up-to-date (UTD) by many European countries and as also stored in the Air Quality e-Reporting database, together with the EMEP or the Copernicus Atmospheric Monitoring Service (CAMS) modelling data in two variants (i.e. CAMS Ensemble Interim Reanalysis and CAMS Ensemble Forecast) for potential preparing of preliminary spatial maps. With respect to the availability, the CAMS Ensemble Forecast is the most useful in the potential interim mapping. Such preliminary maps could be constructed approximately one year earlier than the validated maps. Even though we have demonstrated the feasibility, the mapping performance presented in the report is influenced by the lack of the E2a data in some areas.
Next to the evaluation of potential interim maps, regular RIMM maps based on the validated E1a measurement data using three different chemical transport model outputs have been compared, i.e. using the CAMS Ensemble Forecast, the CAMS Ensemble Interim Reanalysis and the EMEP model outputs. Based on the evaluation of the results presented, it is not possible to conclude that any of the three model datasets gives definitively better results compared to the others. The results do not provide strong reasons for a potential change of the model used in the regular mapping.
In addition, the RIMM mapping results have been compared with the CAMS Ensemble Forecast and the CAMS Ensemble Interim Reanalysis outputs. The comparison shows that the data fusion RIMM method gives better results, both in the rural and urban background areas, presumably because of the higher spatial resolution, introduction of additional ancillary data in the data fusion and not fully reduced bias in some data assimilation methods used in CAMS.
ETC/ATNI
2021
2023
2024
2020