Found 9990 publications. Showing page 39 of 400:
2023
PM2.5 Retrieval Using Aerosol Optical Depth, Meteorological Variables, and Artificial Intelligence
Particulate matter (PM) is one of the major air pollutants that has adverse impacts on human health. The aim of this study is to present an alternative approach for retrieving fine PM (particles with an aerodynamic diameter less than 2.5 μm, PM2.5) using artificial intelligence. Ground-based instruments, including a hand-held Microtops II sun photometer (for aerosol optical depth), a PurpleAir sensor (for PM2.5), and Rotronic sensors (for temperature and relative humidity), are used for the machine learning algorithm training. The retrieved PM2.5 reveals an adequate performance with an error of 0.08 μg m−3 and a Pearson correlation coefficient of 0.84.
2023
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed “Arctic amplification”. The response of low-level clouds to changing aerosol characteristics throughout the year is therefore an important driver of Arctic change that currently lacks sufficient constraints. As such, during the NASCENT campaign (Ny-Ålesund AeroSol Cloud ExperimeNT) extending over a full year from October 2019 to October 2020, microphysical properties of aerosols and clouds were studied at the Zeppelin station (475 m a.s.l.), Ny-Ålesund, Svalbard, Norway. Particle number size distributions obtained from differential mobility particle sizers as well as chemical composition derived from filter samples and an aerosol chemical speciation monitor were analyzed together with meteorological data, in particular vertical wind velocity. The results were used as input to a state-of-the-art cloud droplet formation parameterization to investigate the particle sizes that can activate to cloud droplets, the levels of supersaturation that can develop, the droplet susceptibility to aerosol and the role of vertical velocity. We evaluate the parameterization and the droplet numbers calculated through a droplet closure with in-cloud in situ measurements taken during nine flights over 4 d. A remarkable finding is that, for the clouds sampled in situ, closure is successful in mixed-phase cloud conditions regardless of the cloud glaciation fraction. This suggests that ice production through ice–ice collisions or droplet shattering may have explained the high ice fraction, as opposed to rime splintering that would have significantly reduced the cloud droplet number below levels predicted by warm-cloud activation theory. We also show that pristine-like conditions during fall led to clouds that formed over an aerosol-limited regime, with high levels of supersaturation (generally around 1 %, although highly variable) that activate particles smaller than 20 nm in diameter. Clouds formed in the same regime in late spring and summer, but aerosol activation diameters were much larger due to lower cloud supersaturations (ca. 0.5 %) that develop because of higher aerosol concentrations and lower vertical velocities. The contribution of new particle formation to cloud formation was therefore strongly limited, at least until these newly formed particles started growing. However, clouds forming during the Arctic haze period (winter and early spring) can be limited by updraft velocity, although rarely, with supersaturation levels dropping below 0.1 % and generally activating larger particles (20 to 200 nm), including pollution transported over a long range. The relationship between updraft velocity and the limiting cloud droplet number agrees with previous observations of various types of clouds worldwide, which supports the universality of this relationship.
2023
Acoustic waves below the frequency limit of human hearing - infrasound - can travel for thousands of kilometres in the atmosphere. The global propagation signature of infrasound is highly sensitive to the wind structure of the stratosphere.
This work exploits processed continuous data from three high-latitude infrasound stations to characterize an aspect of the stratospheric polar vortex. Concretely, a mapping is developed which takes the infrasound data from these three stations as input and outputs an estimate of the polar cap zonal mean wind averaged over 60-90 degrees in latitude at the 1 hPa pressure level. This stratospheric diagnostic information is relevant to, for example, sudden stratospheric warming assessment and sub-seasonal prediction.
The considered acoustic data is within a low-frequency regime globally dominated by so-called microbarom infrasound, which is continuously radiated into the atmosphere due to nonlinear interaction between counter-propagating ocean surface waves.
We trained a stochastics-based machine learning model (delay-SDE-net) to map between a time series of five years (2014-2018) of processed infrasound data and the ERA5 (reanalysis-based) daily average polar cap wind at 1 hPa for the same period. The ERA5 data was hence treated as ground-truth. In the prediction, the delay-SDE-net utilizes time-lagged inputs and their dependencies, as well as the day of the year to account for seasonal differences. In the validation phase, the input was the 2019 and 2020 infrasound time series, and the model inference results in an estimate of the daily average polar cap wind time-series. This result was then compared to the ERA5 representation of the stratospheric diagnostic time-series for the same period.
The applied machine learning model is based on stochastics and allows for an interpretable approach to estimate the aleatoric and epistemic prediction uncertainties. It is found that the mapping, which is only informed of the trained model, the day of year, and the infrasound data from three stations, generates a 1 hPa polar cap average wind estimate with a prediction error standard deviation of around 10 m/s compared to ERA5.
Focus should be put on the winter months because this is when the coupling between the stratosphere and the troposphere can mostly influence the surface conditions and provide additional prediction skill, in particular during strong and weak stratospheric polar vortex regimes. The infrasound data is available in real-time, and we discuss how the developed approach can be extended to provide near real-time stratospheric polar vortex diagnostics.
2023
2023
2023
2023
2023
2023
2023
Plastic pollution (including microplastics) has been reported in a variety of biotic and abiotic compartments across the circumpolar Arctic. Due to their environmental ubiquity, there is a need to understand not only the fate and transport of physical plastic particles, but also the fate and transport of additive chemicals associated with plastic pollution. Further, there is a fundamental research gap in understanding long-range transport of chemical additives to the Arctic via plastics as well as their behavior under environmentally relevant Arctic conditions. Here, we comment on the state of the science of plastic as carriers of chemical additives to the Arctic, and highlight research priorities going forward. We suggest further research on the transport pathways of chemical additives via plastics from both distant and local sources and laboratory experiments to investigate chemical behavior of plastic additives under Arctic conditions, including leaching, uptake, and bioaccumulation. Ultimately, chemical additives need to be included in strategic monitoring efforts to fully understand the contaminant burden of plastic pollution in Arctic ecosystems.
2023