Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9990 publications. Showing page 42 of 400:

Publication  
Year  
Category

Sources and long-range transport of atmospheric microplastics in the Northern Atlantic Ocean

Gossmann, Isabel; Herzke, Dorte; Held, Andreas; Schulz, Janina; Nikiforov, Vladimir; Georgi, Christoph; Evangeliou, Nikolaos; Eckhardt, Sabine; Gerdts, Gunnar; Wurl, Oliver; Scholz-Böttcher, Barbara

2023

Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling

Marécal, Virginie; Voisin-Plessis, Ronan; Roberts, Tarda Jane; Aiuppa, Alessandro; Narivelo, Herizo; Hamer, Paul David; Josse, Beatrice; Guth, Jonathan; Surl, Luke

HBr emissions from volcanoes lead rapidly to the formation of BrO within volcanic plumes and have an impact on tropospheric chemistry, at least at the local and regional scales. The motivation of this paper is to prepare a framework for further 3D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. The main aim is to evaluate the ability of the model to produce a realistic partitioning of bromine species within a grid box size typical of MOCAGE (Model Of atmospheric Chemistry At larGE scale) 3D (0.5∘ × 0.5∘). This work is based on a 1D single-column configuration of the global chemistry-transport model MOCAGE that has low enough computational cost to allow us to perform a large set of sensitivity simulations. This paper uses the emissions from the Mount Etna eruption on 10 May 2008. Several reactions are added to MOCAGE to represent the volcanic plume halogen chemistry. A simple plume parameterisation is also implemented and tested. The use of this parameterisation tends to only slightly limit the efficiency of BrO net production. Both simulations with and without the parameterisation give results for the partitioning of the bromine species, of ozone depletion and of the ratio that are consistent with previous studies.

A series of test experiments were performed to evaluate the sensitivity of the results to the composition of the emissions (primary sulfate aerosols, Br radical and NO) and to the effective radius assumed for the volcanic sulfate aerosols. Simulations show that the plume chemistry is sensitive to all these parameters. We also find that the maximum altitude of the eruption changes the BrO production, which is linked to the vertical variability of the concentrations of oxidants in the background air. These sensitivity tests display changes in the bromine chemistry cycles that are generally at least as important as the plume parameterisation. Overall, the version of the MOCAGE chemistry developed for this study is suitable to produce the expected halogen chemistry in volcanic plumes during daytime and night-time.

2023

Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials

Elje, Elisabeth; Mariussen, Espen; McFadden, Erin; Dusinska, Maria; Rundén-Pran, Elise

For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R’s to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air–liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.

2023

Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation

Mikusova, Miroslava Lehotska; Busova, Milena; Tulinska, Jana; Masanova, Vlasta; Liskova, Aurelia; Uhnakova, Iveta; Dusinska, Maria; Krivosikova, Zora; Rollerova, Eva; Alacova, Radka; Wsolova, Ladislava; Horvathova, Mira; Szabova, Michaela; Lukan, Norbert; Vecera, Zbynek; Coufalik, Pavel; Krumal, Kamil; Alexa, Lukas; Thon, Vojtech; Piler, Pavel; Buchtova, Marcela; Vrlikova, Lucie; Moravec, Pavel; Mikuska, Pavel

Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.

2023

Emerging pollutants in the Arctic environment

Kallenborn, Roland; Ali, Aasim Musa Mohamed; Drotikova, Tatiana; Hartz, William Frederik

2023

An Approach to Assess the Biological Effects of Semi-Volatile Organic Chemicals in Indoor Air

Halse, Anne Karine; Longhin, Eleonora Marta; Bohlin-Nizzetto, Pernilla; Mariussen, Espen; Borgen, Anders; Warner, Nicholas Alexander

2023

Bisphenol Analogues and Alkylphenols in Soil, Terrestrial Biota, and House Dust from an Urban Environment

Nipen, Maja; Skaar, Jøran Solnes; Rostkowski, Pawel; Heimstad, Eldbjørg Sofie; Hanssen, Linda

2023

Tire Wear Particles in Coastal Areas: Are there Suitable Chemical Indicators of Exposure in Blue Mussel (Mytilus Edilus)?

Foscari, Aurelio Giovanni; Mowafi, R.; Seiwert, B.; Herzke, Dorte; Witte, B. De; Delbare, D.; Heras, G. B.; Reemtsma, Thorsten

2023

Reproducible pipelines and readiness levels in plastic monitoring

Nikiforov, Vladimir; Aliani, Stefano; Lusher, Amy Lorraine; Galgani, Francois; Herzke, Dorte; Primpke, Sebastian; Roscher, Lisa; Silva, Vitor Hugo da; Strand, Jakob; Suaria, Giuseppe; Vanavermaete, David; Witte, Bavo P. De; Bavel, Bert van

2023

Atmospheric Microplastic in the Arctic and the Norwegian mainland

Herzke, Dorte; Evangeliou, Nikolaos; Bjørnsen, Astrid E.; Eckhardt, Sabine

2023

Modeling products for ACTRIS stations

Evangeliou, Nikolaos; Eckhardt, Sabine

2023

Determination of PFC with Canister Sampling and Medusa GC–MS Analysis in Comparison to General IPCC Estimation Methods

Åsheim, Henrik; Isaksen, Morten; Hermansen, Ove; Schmidbauer, Norbert; Lunder, Chris Rene

2023

Urban Living Labs for Healthy and People-Centered Cities: A Nordic Model

Steffansen, Rasmus Nedergård; Lissandrello, Enza; Castell, Nuria

2023

Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives

Luarte, Thais; Gómez-Aburto, Victoria A.; Poblete-Castro, Ignacio; Castro-Nallar, Eduardo; Huneeus, Nicolas; Molina-Montenegro, Marco; Egas, Claudia; Azcune, Germán; Pérez-Parada, Andrés; Lohmann, Rainier; Bohlin-Nizzetto, Pernilla; Dachs, Jordi; Nash, Susan Bengtson; Chiang, Gustavo; Pozo, Karla; Galban-Malagon, Cristobal

Persistent organic pollutants (POPs) are synthetic compounds that were intentionally produced in large quantities and have been distributed in the global environment, originating a threat due to their persistence, bioaccumulative potential, and toxicity. POPs reach the Antarctic continent through long-range atmospheric transport (LRAT). In these areas, low temperatures play a significant role in the environmental fate of POPs, retaining them for a long time due to cold trapping by diffusion and wet deposition, acting as a net sink for many POPs. However, in the current context of climate change, the remobilization of POPs that were trapped in water, ice, and soil for decades is happening. Therefore, continuous monitoring of POPs in polar air is necessary to assess whether there is a recent re-release of historical pollutants back to the environment. We reviewed the scientific literature on atmospheric levels of several POP families (polychlorinated biphenyls – PCBs, hexachlorobenzene – HCB, hexachlorocyclohexanes – HCHs, and dichlorodiphenyltrichloroethane – DDT) from 1980 to 2021. We estimated the atmospheric half-life using characteristic decreasing times (TD). We observed that HCB levels in the Antarctic atmosphere were higher than the other target organochlorine pesticides (OCPs), but HCB also displayed higher fluctuations and did not show a significant decrease over time. Conversely, the atmospheric levels of HCHs, some DDTs, and PCBs have decreased significantly. The estimated atmospheric half-lives for POPs decreased in the following order: 4,4' DDE (13.5 years) > 4,4' DDD (12.8 years) > 4,4' DDT (7.4 years) > 2,4' DDE (6.4 years) > 2,4' DDT (6.3 years) > α-HCH (6 years) > HCB (6 years) > γ-HCH (4.2 years). For PCB congeners, they decreased in the following order: PCB 153 (7.6 years) > PCB 138 (6.5 years) > PCB 101 (4.7 years) > PCB 180 (4.6 years) > PCB 28 (4 years) > PCB 52 (3.7 years) > PCB 118 (3.6 years). For HCH isomers and PCBs, the Stockholm Convention (SC) ban on POPs did have an impact on decreasing their levels during the last decades. Nevertheless, their ubiquity in the Antarctic atmosphere shows the problematic issues related to highly persistent synthetic chemicals.

2023

Copernicus Atmosphere Monitoring Service. Interim Annual Assessment Report on European Air Quality in 2022

Hamer, Paul David; Fjæraa, Ann Mari; Tarrasón, Leonor; Soares, Joana; Meleux, Frédérik; Colette, Augustin; Ung, Anthony; Raux, Blandine; Kuenen, Jeroen

Copernicus Atmosphere Monitoring Service

2023

Leaching of chemicals and DOC from tire particles under simulated marine conditions

Foscari, Aurelio Giovanni; Schmidt, Natascha; Seiwert, Bettina; Herzke, Dorte; Sempere, Richard; Reemtsma, Thorsten

Tire wear particles (TWPs) represent one of the major anthropogenic pools of particles ending up in the environment. They contain a large variety of chemicals, a part of which may be released into the environment through leaching, although the influence of sunlight and other environmental factors during this process is still unclear. This laboratory study compares the leaching of organic compounds from TWP in seawater in the dark and under artificial sunlight for 1) cryo-milled tire tread (CMTT), 2) ‘virgin’ crumb rubber (VCR) and 3) crumb rubber immersed in the sea for ≥12 months prior to the experiments (WCR). Leachates were analyzed for dissolved organic carbon (DOC) and 19 tire-derived chemicals, benzothiazoles and phenylguanidines as well as phenylendiamines by liquid chromatography-high resolution-mass spectrometry. For DOC and most chemicals, the amounts released decreased in the order CMTT > VCR > WCR and increased when leaching occurred under artificial sunlight. sunlight also led to the formation of 23 transformation processes related to 1,3-diphenylguanidine (DPG). In contrast, 4-hydroxydiphenylamine (4-HDPA) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6-PPDQ) were found in lower amounts upon sunlight exposure. The 19 quantified chemicals, however, did only account for 6%–55% of the DOC in the leachates; most of the DOC, thus, remained unexplained. This study highlights that the amount of chemicals leached from tire particles depends upon their aging history and may be modulated by environmental conditions.

2023

Joint Computation and Communication Resource Allocation for Unmanned Aerial Vehicle NOMA Systems

Do-Duy, Tan; Huynh, Dang V.; Garcia-Palacios, Emi; Cao, Tuan-Vu; Sharma, Vishal; Duong, Trung Q.

2023

Isoscapes Norway

Johansen, Ingar; Polteau, Stephane; Vogt, Rolf David; Uggerud, Hilde Thelle; Clayer, Francois

2023

Feathers as Temporal Archives of Ecological Stress and Metal Exposure in a Terrestrial Raptor: A Long- Term Study on Breeding Tawny Owls

Hansen, Elisabeth; Bustnes, Jan Ove; Eulaers, Igor; Herzke, Dorte; Bårdsen, Bård-Jørgen; Bangjord, Georg; Bourgeon, Sophie; Ballesteros, Manuel

2023

Leaching of Organic Compounds from Microrubber Under Conditions Simulating the Sea Surface and the Deep Sea

Schmidt, Natascha; Herzke, Dorte; Garel, Marc; Foscari, Aurelio Giovanni; Seiwert, Bettina; Reemtsma, Thorsten; Tamburini, Christian; Sempere, Richard

2023

Publication
Year
Category