Found 9764 publications. Showing page 48 of 391:
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual report 2021.
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV-measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2021 was characterized by low total ozone values in June and July, whereas “normal” ozone values were measured during winter and spring.
NILU
2022
2022
Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere
During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.
2022
The assessment of long-range transport potential (LRTP) is enshrined in several frameworks for chemical regulation such as the Stockholm Convention. Screening for LRTP is commonly done with the OECD Pov and LRTP Screening Tool employing two metrics, characteristic travel distance (CTD) and transfer efficiency (TE). Here we introduce a set of three alternative metrics and implement them in the Tool’s model. Each metric is expressed as a fraction of the emissions in a source region. The three metrics quantify the extent to which the chemical (i) reaches a remote region (dispersion, ϕ1), (ii) is transferred to surface media in the remote region (transfer, ϕ2), and (iii) accumulates in these surface media (accumulation, ϕ3). In contrast to CTD and TE, the emissions fractions metrics can integrate transport via water and air, enabling comprehensive LRTP assessment. Furthermore, since there is a coherent relationship between the three metrics, the new approach provides quantitative mechanistic insight into different phenomena determining LRTP. Finally, the accumulation metric, ϕ3, allows assessment of LRTP in the context of the Stockholm Convention, where the ability of a chemical to elicit adverse effects in surface media is decisive. We conclude that the emission fractions approach has the potential to reduce the risk of false positives/negatives in LRTP assessments.
2022
Svalbard is a remote and scarcely populated Arctic archipelago and is considered to be mostly influenced by long-range-transported air pollution. However, there are also local emission sources such as coal and diesel power plants, snowmobiles and ships, but their influence on the background concentrations of trace gases has not been thoroughly assessed. This study is based on data of tropospheric ozone (O3) and nitrogen oxides (NOx) collected in three main Svalbard settlements in spring 2017. In addition to these ground-based observations and radiosonde and O3 sonde soundings, ERA5 reanalysis and BrO satellite data have been applied in order to distinguish the impact of local and synoptic-scale conditions on the NOx and O3 chemistry. The measurement campaign was divided into several sub-periods based on the prevailing large-scale weather regimes. The local wind direction at the stations depended on the large-scale conditions but was modified due to complex topography. The NOx concentration showed weak correlation for the different stations and depended strongly on the wind direction and atmospheric stability. Conversely, the O3 concentration was highly correlated among the different measurement sites and was controlled by the long-range atmospheric transport to Svalbard. Lagrangian backward trajectories have been used to examine the origin and path of the air masses during the campaign.
2022
2022
Northern Fulmars (Fulmarus glacialis) are a pelagic seabird species distributed at northern and polar latitudes. They are often used as an indicator of plastic pollution in the North Sea region, but data are lacking from higher latitudes, especially when it comes to chicks. Here, we investigated amounts of ingested plastic and their characteristics in fulmar chicks from the Faroe Islands. Plastic particles (≥1 mm) in chicks of two age classes were searched using a digestion method with KOH. In addition, to evaluate if additive tissue burden reflects plastic ingestion, we measured liver tissue concentrations of two pollutant classes associated with plastic materials: polybrominated diphenyl ethers (PBDEs) and several dechloranes, using gas chromatography with high-resolution mass spectrometry. The most common shape was hard fragment (81%) and the most common polymer was polyethylene (73%). Plastic contamination did not differ between either age class, and we found no correlation between neither the amount and mass of plastic particles and the concentration of additives. After comparison with previous studies on adult fulmars, we do not recommend using chicks for biomonitoring adults because chicks seem to ingest more plastics than adults.
Elsevier
2022
2022
2022
2022
2022
Assessment of heavy metal and POP pollution on global, regional and national scales
Meteorological Synthesizing Centre - East (MSC-E)
2022
2022
2022
2022
2022
2022
2022
Integrated assessment of noise and air quality in European cities. Methodology.
The resulting index provides spatial information on the areas most affected combining noise and air pollution across European urban areas. This information can build on and contribute to the EEA’s integrated assessments and it is going to be used to disseminate information on the European environment to policy makers and to European citizens.
ETC/ATNI
2022
Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013–2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30–240 min) and long-term data coverage (9–36 months), providing essential information to improve/validate air quality, health impact, and climate models.
Elsevier
2022