Found 9989 publications. Showing page 53 of 400:
High-Resolution Emissions from Wood Burning in Norway—The Effect of Cabin Emissions
Emissions from wood burning for heating in secondary homes or cabins is an important part in the development of high-resolution emissions in specific areas. Norway is used as case study as 20% of the national wood consumption for heating occurs in cabins. Our study first shows a method to estimate emissions from cabins based on traffic data to derive cabin occupancy, which combined with heating need allows for the spatial and temporal distribution of emissions. The combination of residential (RWC) and cabin wood combustion (CWC) emissions shows large spatial and temporal differences, and a temporally “cabin population” can in areas be orders of magnitude larger than the registered population. While RWC emissions have been steadily reduced, CWC have kept relatively constant or even increased, which results in an increase in the cabin share to total heating emissions up to 25–35%. When comparing with regional emission inventories, our study shows that the gradient between rural and urban areas is not well-represented in regional inventories, which resembles a population-based distribution and does not allocate emissions in cabin municipalities. CWC emissions may become an increasing environmental concern as higher densification trends in mountain areas are observed.
2022
To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999–2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p′-dichlorodiphenyltrichloroethane (p.p′-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.
2022
2022
Anthropogenic activities are introducing multiple chemical contaminants into ecosystems that act as stressors for wildlife. Perfluoroalkyl substances (PFAS) and mercury (Hg) are two relevant contaminants that may cause detrimental effects on the fitness of many aquatic organisms. However, there is a lack of information on their impact on the expression of secondary sexual signals that animals use for mate choice. We have explored the correlations between integument carotenoid-based colourations, blood levels of carotenoids, and blood levels of seven PFAS and of total Hg (THg) in 50 adult male black-legged kittiwakes (Rissa tridactyla) from the Norwegian Arctic during the pre-laying period, while controlling for other colouration influencing variables such as testosterone and body condition. Kittiwakes with elevated blood concentrations of PFAS (PFOSlin, PFNA, PFDcA, PFUnA, or PFDoA) had less chromatic but brighter bills, and brighter gape and tongue; PFOSlin was the pollutant with the strongest association with bill colourations. Conversely, plasma testosterone was the only significant correlate of hue and chroma of both gape and tongue, and of hue of the bill. Kittiwakes with higher concentrations of any PFAS, but not of THg, tended to have significantly higher plasma concentrations of the carotenoids astaxanthin, zeaxanthin, lutein, and cryptoxanthin. Our work provides the first correlative evidence that PFAS exposure might interfere with the carotenoid metabolism and the expression of integument carotenoid-based colourations in a free-living bird species. This outcome may be a direct effect of PFAS exposure or be indirectly caused by components of diet that also correlate with elevated PFAS concentrations (e.g., proteins). It also suggests that there might be no additive effect of THg co-exposure with PFAS on the expression of colourations. These results call for further work on the possible interference of PFAS with the expression of colourations used in mate choice.
2022
2022
Common Considerations for Genotoxicity Assessment of Nanomaterials
Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines. A critique of the genotoxicity literature in Elespuru et al., 2018, reinforced evidence of problems with genotoxicity assessment of nanomaterials (NM) noted by many previously. A follow-up to the critique of problems (what is wrong) is a series of methods papers in this journal designed to provide practical information on what is appropriate (right) in the performance of genotoxicity assays altered for NM assessment. In this “Common Considerations” paper, general considerations are addressed, including NM characterization, sample preparation, dosing choice, exposure assessment (uptake) and data analysis that are applicable to any NM genotoxicity assessment. Recommended methods for specific assays are presented in a series of additional papers in this special issue of the journal devoted to toxicology methods for assessment of nanomaterials: the In vitro Micronucleus Assay, TK Mutagenicity assays, and the In vivo Comet Assay. In this context, NM are considered generally as insoluble particles or test articles in the nanometer size range that present difficulties in assessment using techniques described in standards such as OECD guidelines.
2022
Here we provide an overview of the newly commenced project ‘ReGAME - Reliable Global Methane Emissions estimates in a changing world’, funded by Research Council of Norway from 2021-2025, where we combine new developments in atmospheric methane observations: isotopic ratios (deuterium and 13C in methane), and the Integrated Carbon Observation System (ICOS) ground-based station network with atmospheric models (the chemistry transport model OsloCTM, and inversion model FLEXINVERT) to understand how and why atmospheric methane levels are increasing. The project has a particular focus on understanding the state of Arctic methane reservoirs such as ocean seeps and high latitude wetlands. This includes plans for a new observing system aboard the ice breaking vessel RV Kronprins Haakon and ocean observations, e.g., dynamics of Seep fluxes assessed during 1 year of continuous measurements at a seep site the NorEMSO project, updated information on spatial seep distribution via echo sounding, as well as high resolution high-latitude inversion modeling of atmospheric methane with FLEXINVERT. Furthermore, we investigate the utility of including of satellite data (TROPOMI aboard the Sentinel 5P mission) together with ground-based data, in inversion modeling. The inclusion of satellite data into inversion models is quite novel and offers rewards by increasing spatial coverage compared to ground based networks alone, potentially reducing uncertainties in the model outputs, and challenges due to satellite data uncertainties, spatial/ temporal coverage, and handling large data fields
2022
2022
Monitoring of long-range transported air pollutants in Norway. Annual Report 2021.
This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2021, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. The level of pollution in 2021 was generally low with few high episodes.
NILU
2022
Advanced in vitro models are needed to support next-generation risk assessment (NGRA), moving from hazard assessment based mainly on animal studies to the application of new alternative methods (NAMs). Advanced models must be tested for hazard assessment of nanomaterials (NMs). The aim of this study was to perform an interlaboratory trial across two laboratories to test the robustness of and optimize a 3D lung model of human epithelial A549 cells cultivated at the air–liquid interface (ALI). Potential change in sensitivity in hazard identification when adding complexity, going from monocultures to co- and tricultures, was tested by including human endothelial cells EA.hy926 and differentiated monocytes dTHP-1. All models were exposed to NM-300K in an aerosol exposure system (VITROCELL® cloud-chamber). Cyto- and genotoxicity were measured by AlamarBlue and comet assay. Cellular uptake was investigated with transmission electron microscopy. The models were characterized by confocal microscopy and barrier function tested. We demonstrated that this advanced lung model is applicable for hazard assessment of NMs. The results point to a change in sensitivity of the model by adding complexity and to the importance of detailed protocols for robustness and reproducibility of advanced in vitro models
2022
Lack of mutagenicity of TiO2 nanoparticles in vitro despite cellular and nuclear uptake
The potential genotoxicity of titanium dioxide (TiO2) nanoparticles (NPs) is a conflictive topic because both positive and negative findings have been reported. To add clarity, we have carried out a study with two cell lines (V79–4 and A549) to evaluate the effects of TiO2 NPs (NM-101), with a diameter ranging from 15 to 60 nm, at concentrations 1–75 μg/cm2. Using two different dispersion procedures, cell uptake was determined by Transmission Electron Microscopy (TEM). Mutagenicity was evaluated using the Hprt gene mutation test, while genotoxicity was determined with the comet assay, detecting both DNA breaks and oxidized DNA bases (with formamidopyrimidine glycosylase - Fpg). Cell internalization, as determined by TEM, shows TiO2 NM-101 in cytoplasmic vesicles, as well as close to and inside the nucleus. Such internalization did not depend on the state of agglomeration, nor the dispersion used. In spite of such internalization, no cytotoxicity was detected in V79–4 cells (relative growth activity and plating efficiency assays) or in A549 cells (AlamarBlue assay) after exposure lasting for 24 h. However, a significant decrease in the relative growth activity was detected at longer exposure times (48 and 72 h) and at the highest concentration 75 µg/cm2. When the modified enzyme-linked alkaline comet assay was performed on A549 cells, although no significant induction of DNA damage was detected, a positive concentration-effects relationship was observed (Spearman’s correlation = 0.9, p 0.0001). Furthermore, no significant increase of DNA oxidized purine bases was observed. When the frequency of Hprt gene mutants was determined in V79–4 cells, no increase was observed in the exposed cells, relative to the unexposed cultures. Our general conclusion is that, under our experimental conditions, TiO2 NM-101 exposure does not exert mutagenic effects despite the evidence of NP uptake by V79–4 cells.
2022
Updated trends for atmospheric mercury in the Arctic: 1995–2018
The Arctic region forms a unique environment with specific physical, chemical, and biological processes affecting mercury (Hg) cycles and limited anthropogenic Hg sources. However, historic global emissions and long range atmospheric transport has led to elevated Hg in Arctic wildlife and waterways. Continuous atmospheric Hg measurements, spanning 20 years, and increased monitoring sites has allowed a more comprehensive understanding of how Arctic atmospheric mercury is changing over time. Time-series trend analysis of TGM (Total Gaseous Mercury) in air was performed from 10 circumpolar air monitoring stations, comprising of high-Arctic, and sub-Arctic sites. GOM (gaseous oxidised mercury) and PHg (particulate bound mercury) measurements were also available at 2 high-Arctic sites. Seasonal mean TGM for sub-Arctic sites were lowest during fall ranging from 1.1 ng m−3 Hyytiälä to 1.3 ng m−3, Little Fox Lake. Mean TGM concentrations at high-Arctic sites showed the greatest variability, with highest daily means in spring ranging between 4.2 ng m−3 at Amderma and 2.4 ng m−3 at Zeppelin, largely driven by local chemistry. Annual TGM trend analysis was negative for 8 of the 10 sites. High-Arctic seasonal TGM trends saw smallest decline during summer. Fall trends ranged from −0.8% to −2.6% yr−1. Across the sub-Arctic sites spring showed the largest significant decreases, ranging between −7.7% to −0.36% yr−1, while fall generally had no significant trends. High-Arctic speciation of GOM and PHg at Alert and Zeppelin showed that the timing and composition of atmospheric mercury deposition events are shifting. Alert GOM trends are increasing throughout the year, while PHg trends decreased or not significant. Zeppelin saw the opposite, moving towards increasing PHg and decreasing GOM. Atmospheric mercury trends over the last 20 years indicate that Hg concentrations are decreasing across the Arctic, though not uniformly. This is potentially driven by environmental change, such as plant productivity and sea ice dynamics.
2022
2022
2022
The way Norway is spearheading electrification in the transport sector is of global interest. In this study, we used the Norwegian Emissions from Road Vehicle Exhaust (NERVE) model, a bottom-up high-resolution traffic emission model, to calculate all emissions in Norway (2009–2020) and evaluate potential co-benefit and trade-offs of policies to target climate change mitigation, air quality and socioeconomic factors. Results for municipal data with regard to traffic growth, road network influences, vehicle composition, emissions and energy consumption are presented. Light vehicle CO2 emissions per kilometer have been reduced by 22% since 2009, mainly driven by an increasing bio-fuel mixing and battery electric vehicles (BEV) share. BEVs are mostly located in and around the main cities, areas with young vehicle fleets, and strong local incentives. Beneficiaries of BEVs incentives have been a subset of the population with strong economic indicators. The incentivized growth in the share of diesel-fuelled passenger vehicles has been turned, and together with Euro6 emission standards, light vehicle NOx emissions have been halved since peaking in 2014. BEVs represent an investment in emission reductions in years to come, and current sales set Norway up for an accelerated decline in all exhaust emissions despite the continual growth in traffic.
2022
The influence of photochemistry on outdoor to indoor NO2 in some European museums
This paper reports 1 year of monthly average NO2 indoor to outdoor (I/O) concentrations measured in 10 European museums, and a simple steady-state box model that explains the annual variation. The measurements were performed in the EU FP5 project Master (EVK-CT-2002-00093). The work provides extensive documentation of the annual variation of NO2 I/O concentration ratios, with ratios above unity in the summer, in situations with no indoor emissions of NO2. The modelling included the most relevant production and removal processes of NO2 and showed that the outdoor photolysis was the probable main explanation of the annual trends in the NO2 I/O concentration ratios.
2022