Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9985 publications. Showing page 75 of 400:

Publication  
Year  
Category

Public Perception of Urban Air Quality Using Volunteered Geographic Information Services

Grossberndt, Sonja; Schneider, Philipp; Liu, Hai-Ying; Fredriksen, Mirjam; Castell, Nuria; Syropoulou, Panagiota; Bartonova, Alena

Investigating perceived air quality (AQ) in urban areas is a rather new topic of interest. Papers presenting results from studies on perception of AQ have thus far focused on the individual characteristics leading to a certain AQ perception or have compared personal perception with on-site measurements. Here we present a novel approach, namely applying volunteered geographic information (VGI) technologies in urban AQ monitoring. We present two smartphone applications that have been developed and applied in two EU projects (FP7 CITI-SENSE and H2020 hackAIR) to obtain citizens’ perception of AQ. We focus on observations reported through the smartphone apps for the greater Oslo area in Norway. In order to evaluate whether the reports on perceived AQ contain information about the actual spatial patterns of AQ, we carried out a comparison of the perception data against the output from the high-resolution urban AQ model EPISODE. The results indicate an association between modelled annual average pollutant concentrations and the provided perception reports. This demonstrates that the spatial patterns of perceived AQ are not entirely random but follow to some extent what would be expected due to proximity of emission sources and transport. This information shows that VGI about citizens’ perception of AQ has the potential to identify areas with low environmental quality for urban development.

2020

Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova

Manousakas, Manousos; Popovicheva, Olga; Evangeliou, Nikolaos; Diapouli, Evangelia; Sitnikov, Nikolay; Shonija, N.; Eleftheriadis, Konstantinos

Aerosol particles are major short-lived climate forcers, because of their ability to interact with incoming solar radiation. Therefore, addressing mean levels and sources of Arctic aerosols is of high importance in the battle against climate change, due to the Arctic amplification. In the Eastern Arctic, from Finland to Alaska, only one monitoring station exists (HMO Tiksi) and the levels of the Arctic aerosols are usually recorded by sporadic campaigns, while other stations exist in Canada, Finland and Europe. From April 2015 to December 2016, the research station "Ice Base Cape Baranova" (79°16.82'N, 101°37.05'E), located on the Bolshevik island was established in the Siberian high Arctic. Samples were analyzed for equivalent Black Carbon (eBC), Organic Carbon (OC), Elemental Carbon (EC), water-soluble ions, and elements. To identify the spatial origin of the sources, the Potential Source Contributions Function (PSCF) was used in combination with FLEXPART emission sensitivities. OC is the most dominant PM compound in the Ice Cape Baranova station and mostly originates from gas flaring and other industrial regions at lower latitudes, as well as from biomass burning during summertime. Sulfate concentrations were affected by anthropogenic sources in the cold seasons and by natural sources in the warm ones showing distinct seasonal patterns. K+ and Mg2+ originate from sea-salt in winter and from forest fires in summer. The interannual variability of eBC was in good agreement with the general Arctic seasonal trends and was mainly affected by gas flaring, low latitude industrial sources and from biomass burning emissions. Cl− depletion was very low, while Na+ and Cl− originated from the locally formed sea spray.

2020

Impact of Medium-Energy Electron Precipitation on Ozone and Middle Atmosphere Dynamics in WACCM Simulations

Guttu, Sigmund; Orsolini, Yvan J.; Stordal, Frode; Limpasuvan, Varavut; Marsh, Daniel R.

2020

Vedfyring og svevestøv

Høiskar, Britt Ann Kåstad (interview subject); Sollund, Sigrid (journalist)

2020

Assessment of transboundary pollution by toxic substances: Heavy metals and POPs

Travnikov, Oleg; Batrakova, Nadezhda; Gusev, Aleksey; Ilyin, Ilia; Kleimenov, Mikhail; Rozovskaya, Olga; Shatalov, Victor; Strijkina, Irina; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Pfaffhuber, Katrine Aspmo; Mareckova, Katarina; Poupa, Stephan; Wankmüller, Robert; Seussall, Katrin

Meteorological Synthesizing Centre - East (MSC-E)

2020

Subseasonal-to-seasonal Winter Forecasts with the Norwegian Climate Prediction Model: Role of Snow-Atmosphere Coupling at High Latitudes

Orsolini, Yvan J.; Li, Fei; Keenlyside, Noel; Shen, Mao-Lin; Counillon, Francois; Wang, G.

2020

Road-induced microplastics are transported to remote regions

Evangeliou, Nikolaos; Grythe, Henrik; Klimont, Zbigniew; Heyes, Chris; Eckhardt, Sabine; Lopez-Aparicio, Susana; Stohl, Andreas

2020

The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities

Kukkonen, Jaakko; Lopez-Aparicio, Susana; Segersson, David; Geels, Camilla; Kangas, Leena; Kauhaniemi, Mari; Maragkidou, Androniki; Jensen, Anne; Assmuth, Timo; Karppinen, Ari; Sofiev, Mikhail; Hellén, Heidi; Riikonen, Kari; Nikmo, Juha; Kousa, Anu; Niemi, Jarkko; Karvosenoja, Niko; Santos, Gabriela Sousa; Sundvor, Ingrid; Im, Ulas; Christensen, Jesper H.; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Nøjgaard, Jacob Klenø; Omstedt, Gunnar; Andersson, Camilla; Forsberg, Bertil; Brandt, Jørgen

Residential wood combustion (RWC) is an important contributor to air quality in numerous regions worldwide. This study is the first extensive evaluation of the influence of RWC on ambient air quality in several Nordic cities. We have analysed the emissions and concentrations of PM2.5 in cities within four Nordic countries: in the metropolitan areas of Copenhagen, Oslo, and Helsinki and in the city of Umeå. We have evaluated the emissions for the relevant urban source categories and modelled atmospheric dispersion on regional and urban scales. The emission inventories for RWC were based on local surveys, the amount of wood combusted, combustion technologies and other relevant factors. The accuracy of the predicted concentrations was evaluated based on urban concentration measurements. The predicted annual average concentrations ranged spatially from 4 to 7 µg m−3 (2011), from 6 to 10 µg m−3 (2013), from 4 to more than 13 µg m−3 (2013) and from 9 to more than 13 µg m−3 (2014), in Umeå, Helsinki, Oslo and Copenhagen, respectively. The higher concentrations in Copenhagen were mainly caused by the relatively high regionally and continentally transported background contributions. The annual average fractions of PM2.5 concentrations attributed to RWC within the considered urban regions ranged spatially from 0 % to 15 %, from 0 % to 20 %, from 8 % to 22 % and from 0 % to 60 % in Helsinki, Copenhagen, Umeå and Oslo, respectively. In particular, the contributions of RWC in central Oslo were larger than 40 % as annual averages. In Oslo, wood combustion was used mainly for the heating of larger blocks of flats. In contrast, in Helsinki, RWC was solely used in smaller detached houses. In Copenhagen and Helsinki, the highest fractions occurred outside the city centre in the suburban areas. In Umeå, the highest fractions occurred both in the city centre and its surroundings.

2020

Copernicus Atmosphere Monitoring Service. Interim Annual Assessment Report for 2019. European air quality in 2019

Tarrasón, Leonor; Hamer, Paul David; Meleux, Frédérik; Colette, Augustin; Rouïl, Laurence

Copernicus Atmosphere Monitoring Service

2020

Cheaper air quality sensors arrived just in time for the climate catastrophe

Castell, Nuria (interview subject); Calma, Justine (journalist)

2020

Multidecadal trend analysis of in situ aerosol radiative properties around the world

Coen, Martine Collaud; Andrews, Elisabeth; Alastuey, Andrés; Arsov, Todor Petkov; Backman, John; Brem, Benjamin T.; Bukowiecki, Nicolas; Couret, Cedric; Eleftheriadis, Konstantinos; Flentje, Harald; Fiebig, Markus; Gysel-Beer, Martin; Hand, Jenny; Hoffer, András; Hooda, Rakesh; Hueglin, Christoph; Joubert, Warren; Keywood, Melita; Kim, Jeong Eun; Kim, Sang-Woo; Labuschagne, Casper; Lin, Neng-Huei; Lin, Yong; Myhre, Cathrine Lund; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mayol-Bracero, Olga L.; Mihalopoulos, Nikos; Pandolfi, Marco; Prats, Natalia; Prenni, Anthony J.; Putaud, Jean-Philippe; Ries, Ludwig; Reisen, Fabienne; Sellegri, Karine; Sharma, Sangeeta; Sheridan, Patrick; Sherman, James Patrick; Sun, Junying; Titos, Gloria; Torres, Elvis; Tuch, Thomas; Weller, Rolf; Wiedensohler, Alfred; Zieger, Paul; Laj, Paolo

In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.

2020

Survey of emissions of volatile organic chemicals from handheld toys for children above 3 years

Bohlin-Nizzetto, Pernilla; Schmidbauer, Norbert

NILU has, on behalf of the Norwegian Environment Agency, performed a screening study to identify volatile organic chemicals (VOCs) emitted from handheld toys for children. The goal was to identify individual VOCs emitted from toys at room temperature and to evaluate what impact the toys may have on the composition and concentrations of VOCs in indoor air. 12-30 individual VOCs were identified in each toy and 65-143 individual VOCs were detected with a concentration higher than 1 µg/m3. VOCs emitted at high concentrations and/or with hazardous properties were cyclohexanone, aromatic VOCs (xylenes, toluene, ethylbenzene), cyclic siloxanes and 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB). A regulated hydrochlorofluorocarbon (HCFC-141 b) was also detected from 5 toys. The toys with high concentrations of cyclohexanone and cyclic siloxanes affected the composition and concentrations of VOCs in indoor air.

NILU

2020

Results from EMEP/COLOSSAL/ACRTIS intensive measurement campaign

Platt, Stephen Matthew; Yttri, Karl Espen; Aas, Wenche

2020

Status labelling of Birkenes Observatory

Lunder, Chris Rene; Hermansen, Ove; Platt, Stephen Matthew

2020

Kraftig fall i CO2-utslippene

Grythe, Henrik; Korsbakken, Jan Ivar (interview subjects); Sandberg, Tor (journalist)

2020

Impact of late spring Siberian snow on summer rainfall in South-Central China

Shen, Haibo; Li, Fei; He, Shengping; Orsolini, Yvan; Li, Jingyi

Located in the Yangtze River Valley and surrounded by mountains, South-Central China (SCC) frequently suffered from natural disasters such as torrential precipitation, landslide and debris flow. Here we provide corroborative evidence for a link between the late spring (May) snow water equivalent (SWE) over Siberia and the summer (July–August, abbr. JA) rainfall in SCC. We show that, in May, anomalously low SWE over Siberia is robustly related to a large warming from the surface to the mid-troposphere, and to a stationary Rossby wave train from Siberia eastward toward the North Atlantic. On the one hand, over the North Atlantic there exhibits a tripole pattern response of sea surface temperature anomalies in May. It persists to some extent in JA and in turn triggers a wave train propagating downstream across Eurasia and along the Asian jet, as the so-called Silk Road pattern (SRP). On the other hand, over northern Siberia the drier soil occurs in JA, accompanied by an overlying anomalous anticyclone through the positive feedback. This anomalous anticyclone favors the tropospheric cooling over southern Siberia, and the meridional (northward) displacement of the Asian jet (JMD) due to the change in the meridional temperature gradient. The combination of the SRP and the JMD facilitates less water vapor transport from the tropical oceans and anomalous descending motion over SCC, and thus suppresses the precipitation. These findings indicate that May Siberian SWE can be exploited for seasonal predictability of SCC precipitation.

2020

Changes in Net Ecosystem Exchange over Europe During the 2018 Drought

Thompson, Rona Louise; Broquet, G; Gerbig, C.; Koch, T; Lang, M.; Monteil, G.; Munassar, S; Nickless, A; Scholze, M.; Ramonet, M.; Karstens, U.; Schaik, E van; Wu, Z.; Rödenbeck, C.

2020

Can statistics of turbulent tracer dispersion be inferred from camera observations of SO2 in the ultraviolet? A modelling study

Kylling, Arve; Ardeshiri, Hamidreza; Cassiani, Massimo; Dinger, Anna Solvejg; Park, Soon-Young; Pisso, Ignacio; Schmidbauer, Josef Norbert; Stebel, Kerstin; Stohl, Andreas

Atmospheric turbulence and in particular its effect on tracer dispersion may be measured by cameras sensitive to the absorption of ultraviolet (UV) sunlight by sulfur dioxide (SO2), a gas that can be considered a passive tracer over short transport distances. We present a method to simulate UV camera measurements of SO2 with a 3D Monte Carlo radiative transfer model which takes input from a large eddy simulation (LES) of a SO2 plume released from a point source. From the simulated images the apparent absorbance and various plume density statistics (centre-line position, meandering, absolute and relative dispersion, and skewness) were calculated. These were compared with corresponding quantities obtained directly from the LES. Mean differences of centre-line position, absolute and relative dispersions, and skewness between the simulated images and the LES were generally found to be smaller than or about the voxel resolution of the LES. Furthermore, sensitivity studies were made to quantify how changes in solar azimuth and zenith angles, aerosol loading (background and in plume), and surface albedo impact the UV camera image plume statistics. Changing the values of these parameters within realistic limits has negligible effects on the centre-line position, meandering, absolute and relative dispersions, and skewness of the SO2 plume. Thus, we demonstrate that UV camera images of SO2 plumes may be used to derive plume statistics of relevance for the study of atmospheric turbulent dispersion.

2020

ClairCity: Citizen-led air pollution reduction in cities. D7.5 Final City Policy Package – Last City (Amsterdam).

Slingerland, Stephan; Artola, Irati; Barnes, Jo; Fogg-Rogers, Laura; Vito, Laura de; Hayes, Enda; Rodrigues, Vera; Oliveira, Kevin; Lopes, Myriam; Vanherle, Kris; Trozzi, Carlo; Soares, Joana; Knudsen, Svein

The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Amsterdam (the Netherlands).

ClairCity Project

2020

Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air

Röhler, Laura; Schlabach, Martin; Haglund, Peter; Breivik, Knut; Kallenborn, Roland; Bohlin-Nizzetto, Pernilla

The Norwegian Arctic possesses a unique environment for the detection of new potential chemicals of emerging Arctic concern (CEACs) due to remoteness, sparse population and the low number of local contamination sources. Hence, a contaminant present in Arctic air is still considered a priority indication for its environmental stability and environmental mobility. Today, legacy persistent organic pollutants (POPs) and related conventional environmental pollutants are already well-studied because of their identification as Arctic pollutants in the 1980s. Many of them are implemented and reported in various national and international monitoring activities including the Arctic Monitoring and Assessment Programme (AMAP). These standard monitoring schemes, however, are based on compound-specific quantitative analytical methods. Under such conditions, the possibility for the identification of hitherto unidentified contaminants is limited and random at best. Today, new and advanced technological developments allow a broader, unspecific analytical approach as either targeted multicomponent analysis or suspect and non-target screening strategies. In order to facilitate such a wide range of compounds, a wide-scope sample clean-up method for high-volume air samples based on a combination of adsorbents was applied, followed by comprehensive two-dimensional gas chromatography separation and low-resolution time-of-flight mass spectrometric detection (GC × GC-LRMS). During the study reported here, simultaneous non-target and suspect screening were applied. The detection of over 700 compounds of interest in the particle phase and over 1200 compounds in the gaseous phase is reported. Of those, 62 compounds were confirmed with reference standards and 90 compounds with a probable structure (based upon mass spectrometric interpretation and library spectrum comparison). These included compounds already detected in Arctic matrices and compounds not detected previously (see also Fig. 1). In addition, 241 compounds were assigned a tentative structure or compound class. Hitherto unknown halogenated compounds, which are not listed in the mass spectral libraries used, were also detected and partly identified.

2020

Project management

Dusinska, Maria

2020

ClairCity: Citizen-led air pollution reduction in cities. D7.4 Final City Policy Package – Ljubljana.

Slingerland, Stephan; Artola, Irati; Bolscher, Hans; Barnes, Jo; Boushel, Corra; Fogg-Rogers, Laura; Hayes, Enda; Rodrigues, Vera; Oliveira, Kevin; Lopes, Myriam; Vanherle, Kris; Csobod, Eva; Trozzi, Carlo; Piscitello, Enzo; Knudsen, Svein; Soares, Joana

The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Ljubljana.

ClairCity Project

2020

Main sources controlling atmospheric burdens of persistant organic pollutants across Norway

Halvorsen, Helene Lunder; Bohlin-Nizzetto, Pernilla; Eckhardt, Sabine; Gusev, Alexey; Krogseth, Ingjerd Sunde; Möckel, Claudia; Shatalov, Victor; Skogeng, Lovise Pedersen; Breivik, Knut

2020

Publication
Year
Category