Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 10076 publications. Showing page 8 of 404:

Publication  
Year  
Category

Opportunities and challenges of sensor technology for indoor air quality monitoring

Salamalikis, Vasileios; Hassani, Amirhossein; Castell, Nuria; Kephalopoulos, Stelios; Gonzalez, Oscar; Nenes, Thanos; Figols, Maria; Eleftheriadis, Kostas; Lovric, Mario; Battaglia, Alessandro; Beule, Pieter de; Brongersma, Sywert

2025

Gravity Wave-Induced Perturbations in Lidar Backscatter Profiles above La Réunion (21°S, 55°E)

Ming, Fabrice Chane; Tremoulu, Samuel; Gantois, Dominique; Payen, Guillaume; Sicard, Michael; Khaykin, Sergey; Hauchecorne, Alain; Keckhut, Philippe; Duflot, Valentin

2025

Comparison of Atmospheric Microplastic in remote and urban locations in Norway; occurrence, composition and sources

Herzke, Dorte; Schmidt, Natascha; Schulze, Dorothea; Eckhardt, Sabine; Evangeliou, Nikolaos

2025

Enhancing Citizen Observatories for healthy, sustainable, resilient and inclusive cities

Castell, Nuria; Hassani, Amirhossein; Wehn, Uta; Maso, Joan; Tavares, Joao

2025

Metaller, PCB, PAH og dioksiner i mose i Sør-Varanger. Moseundersøkelser 2008, 2015 og 2020

Berglen, Tore Flatlandsmo; Uggerud, Hilde Thelle; Schlabach, Martin; Eckhardt, Sabine; Enge, Ellen Katrin; Bjørklund, Morten; Pfaffhuber, Katrine Aspmo; Aandahl, Tone R.; Fjelldal, Erling

I 2008 samlet Svanhovd Miljøsenter inn mose ved 11 lokaliteter i grenseområdene mot Russland som NILU analyserte for 11 metaller, PCB, PAH og dioksiner. Formålet var å undersøke om det var andre kilder til forurensning i grenseområdene enn gruvedrift og smelteverksindustri. Prøvetaking og analyse ble gjentatt av NILU i 2015 og 2020, men kun for 60 (2015) og 56 (2020) metaller. For spormetallene Ni, Cu, Co og As er det et klart mønster med forhøyede konsentrasjoner nedstrøms Nikel og Zapolyarnyj. Organiske miljøgifter viser lave konsentrasjoner.

NILU

2025

Omgivelsesmålinger av fluor, SO2, tungmetaller, PAH og støvnedfall rundt Alcoa Mosjøen. 22. mai – 19. august 2024

Hak, Claudia; Mortensen, Tore; Uggerud, Hilde Thelle; Vadset, Marit; Andresen, Erik; Enge, Ellen Katrin

På oppdrag fra Alcoa Norway AS dept. Mosjøen har NILU utført målinger i omgivelses-luft rundt smelteverket i Mosjøen. Målingene ble utført med aktiv prøvetaking (fluor, SO2, metaller, PAH, PM10) og passiv prøvetaking (SO2, støvnedfall). Måleprosjektet ble utført i perioden 22. mai – 19. august 2024. Alle målte komponenter var godt under de individuelle grenseverdier, målsettingsverdier og luftkvalitetskriterier i måleperioden. Siden Mosjøen er mest utsatt for utslipp fra aluminiumsverket i sommermånedene, pga. hovedvindretning fra fjorden, over smelteverket mot byen, blir måleresultatene et øvre anslag for bidraget fra smelteverket til konsentrasjonene i Mosjøen over hele året.

NILU

2025

Nord Stream: Største enkeltutslepp av metan nokon gang

Platt, Stephen Matthew (interview subject); Gildestad, Bjørn Atle; Elster, Kristian (journalists)

2025

Methane emissions from the Nord Stream subsea pipeline leaks

Harris, Stephen; Schwietzke, Stefan; France, James L.; Salinas, Nataly Velandia; Fernandez, Tania Meixus; Randles, Cynthia; Guanter, Luis; Irakulis-Loitxate, Itziar; Calcan, Andreea; Aben, Ilse; Abrahamsson, Katarina; Balcombe, Paul; Berchet, Antoine; Biddle, Louise C.; Bittig, Henry C.; Böttcher, Christian; Bouvard, Timo; Broström, Göran; Bruch, Valentin; Cassiani, Massimo; Chipperfield, Martyn P.; Ciais, Philippe; Damm, Ellen; Dammers, Enrico; Gon, Hugo Denier van der; Dogniaux, Matthieu; O'Dowd, Emily; Dupouy, François; Eckhardt, Sabine; Evangeliou, Nikolaos; Feng, Wuhu; Jia, Mengwei; Jiang, Fei; Kaiser-weiss, Andrea; Kamoun, Ines; Kerridge, Brian J.; Lampert, Astrid; Lana, José; Li, Fei; Maasakkers, Joannes D.; Maclean, Jean-Philippe W.; Mamtimin, Buhalqem; Marshall, Julia; Mauger, Gédéon; Mekkas, Anouar; Mielke, Christian; Mohrmann, Martin; Moore, David P.; Nanni, Ricardo; Pätzold, Falk; Pison, Isabelle; Pisso, Ignacio; Platt, Stephen Matthew; Préa, Raphaël; Queste, Bastien Y.; Ramonet, Michel; Rehder, Gregor; Remedios, John J; Reum, Friedemann; Roiger, Anke; Schmidbauer, Norbert; Siddans, Richard; Sunkisala, Anusha; Thompson, Rona Louise; Varon, Daniel J.; Ventres, Lucy J.; Chris, Wilson; Zhang, Yuzhong

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates1,2,3,4,5,6,7,8 with measurement-based (top-down) estimates8,9,10,11,12,13,14,15,16,17,18. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates9,10 to model the evolution of atmospheric emissions from the leaks. We verify our modelled atmospheric emissions by comparing them with top-down point-in-time emission-rate estimates and cumulative emission estimates derived from airborne11, satellite8,12,13,14 and tall tower data. We obtain consistency between our modelled atmospheric emissions and top-down estimates and find that 465 ± 20 thousand metric tons of methane were emitted to the atmosphere. Although, to our knowledge, this represents the largest recorded amount of methane released from a single transient event, it is equivalent to 0.1% of anthropogenic methane emissions for 2022. The impact of the leaks on the global atmospheric methane budget brings into focus the numerous other anthropogenic methane sources that require mitigation globally. Our analysis demonstrates that diverse, complementary measurement approaches are needed to quantify methane emissions in support of the Global Methane Pledge19.

2025

Modeling the Impact of Pedestrianization on Urban Air Quality

O'Regan, Anna C.; Grythe, Henrik; Santos, Gabriela Sousa; Nyhan, Marguerite M.

2025

Spatial and Temporal Assessment of Soil Salinization Across Europe

Zarif, Mohammad Aziz; Hassani, Amirhossein; Afshar, Mehdi H.; Panagos, Panos; Lebron, Inma; Robinson, David A.; Shokri, Nima

2025

Evolution of atmospheric methane under the global methane pledge: insights from an Earth system model

Im, Ulas; Tsigaridis, Kostas; Bauer, Susanne; Shindell, Drew; Olivié, Dirk; Wilson, Simon; Sørensen, Lise Lotte; Langen, Peter; Eckhardt, Sabine; Hoglund-Isaksson, Lena; Klimont, Zig; Bruhwiler, Lori

2025

FILTER: Framework for Improving Low-Cost Sensor Network Data for Air Quality Monitoring

Hassani, Amirhossein; Salamalikis, Vasileios; Schneider, Philipp; Stebel, Kerstin; Castell, Nuria

2025

Inverse modelling of N2O fluxes over Europe: An EYE-CLIMA initiative

Krishnankutty, Nalini; Thompson, Rona Louise; Berchet, Antoine; Winiwarter, Wilfried; Henne, Stephan; Karstens, Ute

2025

The GreenEO Project: Satellite-Based Services to Support Sustainable Land Use Practices Under the European Green Deal

Hamer, Paul David; Frohn, Lise Marie; Geels, Camilla; Christensen, Jesper; Denby, Bruce; Simpson, David; Hutchings, Nicholas; Lopez-Aparicio, Susana; Schneider, Philipp; Cao, Tuan-Vu; Jimenez, Isadora; Fontenelle, Thais; A, Ronald Van Der; Mijling, Bas; Ding, Jieying; Trigo, Isabel F.; Calvet, Jean-Christophe; Schante, Joanne; Judes, Thomas; Tarrasón, Leonor

2025

Effects of the projected changes in land use and climate on soil vulnerability in Europe

Afshar, Mehdi H.; Hassani, Amirhossein; Borrelli, Pasquale; Panagos, Panos; Robinson, David A.; Or, Daniel; Shokri, Nima

2025

Towards a Holistic Approach in Chemical Exposure Assessment: The ExpoAdvance Roadmap

Lamon, Lara; Paini, Alicia; Doyle, James; Moeller, Ruth; Viegas, Susana; Cubadda, Francesco; Hoet, Peter; Nieuwenhuyse, A. van; Louro, Henriqueta; Dusinska, Maria; Galea, Karen S.; Canham, Rebecca; Martins, Carla; Gama, Ana; Teofilo, Vania; Silva, Maria Joao; Ventura, Celia; Alvito, Paula; Yamani, Naouale El; Ghosh, Manosij; Radu, Duca; Siccardi, Marco; Rundén-Pran, Elise; McNamara, Cronan; Price, Paul

2025

The pollution fast-track to the Arctic: how southern wintering areas contribute to organochlorine loads in a migrant seabird breeding in the Arctic

Bustnes, Jan Ove; Bårdsen, Bård-Jørgen; Moe, Børge; Herzke, Dorte; Bemmelen, Rob S.A. van; Tulp, Ingrid; Schekkerman, Hans; Hanssen, Sveinn Are

2025

Antarctica Sampling and Logistic Hurdles for Cyclic Volatile Methylsiloxanes (cVMS)

Durham, Jeremy; McNett, Debra Ann; Irvine, Mark; Sauermilch, Isabel; Seston, Rita M.; Gerhards, Reinhard; Bialik, Robert; Bohlin-Nizzetto, Pernilla; Mateev, Dragomir; Dykyi, Evgen

2025

Cross-Cutting Studies of Per- and Polyfluorinated Alkyl Substances (PFAS) in Arctic Wildlife and Humans

Abass, Khaled; Bonefeld-Jørgensen, Eva Cecilie; Bossi, Rossana; Dietz, Rune; Ferguson, Steve; Fernie, Kim J.; Grandjean, Philippe; Herzke, Dorte; Houde, Magali; Lemiere, Melanie; Letcher, Robert J; Muir, Derek C.G.; Silva, Amila O. De; Ostertag, Sonja; Rand, Amy A.; Søndergaard, Jens; Sonne, Christian; Sunderland, Elsie M.; Vorkamp, Katrin; Wilson, Simon; Weihe, Pal

2025

Non-Target Screening of Chemicals of Emerging Concern in Marine Mammals in the Nordic Environment

Zhu, Linyan; Rehnstam, Svante; Ahrens, Lutz; Harju, Mikael; Rostkowski, Pawel; Søndergaard, Jens; Vorkamp, Katrin

2025

Can Unintentional Emissions in China Explain the Rapid Rise of Global Atmospheric Contamination with Hexachlorobutadiene?

Chen, Chengkang; Zhan, Faqiang; Wei, Amie; Evangeliou, Nikolaos; Oh, Jenny; Eckhardt, Sabine; An, Minde; Wania, Frank

2025

Aerosol hygroscopicity influenced by seasonal chemical composition variations in the Arctic region

Kang, Hyojin; Jung, Chang Hoon; Lee, Bang Young; Krejci, Radovan; Heslin-Rees, Dominic; Aas, Wenche; Yoon, Young Jun

In this study, we quantified aerosol hygroscopicity parameter using aerosol microphysical observation data (κphy), analyzing monthly and seasonal trends in κphy by correlating it with aerosol chemical composition over 6 years from April 2007 to March 2013 at the Zeppelin Observatory in Svalbard, Arctic region. The monthly mean κphy value exhibited distinct seasonal variations, remaining high from winter to spring, reaching its minimum in summer, followed by an increase in fall, and maintaining elevated levels in winter. To verify the reliability of κphy, we employed the hygroscopicity parameter calculated from chemical composition data (κchem). The chemical composition and PM2.5 mass concentration required to calculate κchem was obtained through Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis data and the calculation of κchem assumed that Arctic aerosols comprise only five species: black carbon (BC), organic matter (OM), ammonium sulfate (AS), sea salt aerosol less than a diameter of 2.5 μm (SSA2.5), and dust aerosol less than a diameter of 2.5 μm (Dust2.5). The κchem had no distinct correlation but had a similar seasonal trend compared to κphy. The κchem value followed a trend of SSA2.5 and was much higher by a factor of 1.6 ± 0.3 than κphy on average, due to a large proportion of SSA2.5 mass concentration in MERRA-2 reanalysis data. This may be due to the overestimation of sea salt aerosols in MERRA-2 reanalysis. The relationship between monthly mean κphy and the chemical composition used to calculate κchem was also analyzed. The elevated κphy from October to February resulted from the dominant influence of SSA2.5, while the maximum κphy in March was concurrently influenced by increasing AS and Dust2.5 associated with long-range transport from mid-latitude regions during Arctic haze periods and by SSA mass concentration obtained from in-situ sampling, which remained high from the preceding winter. The relatively low κphy from April to September can be attributed to low SSA2.5 and the dominance of organic compounds in the Arctic summer. Either natural sources such as those of marine and terrestrial biogenic origin or long-range-transported aerosols may contribute to the increase in organic aerosols in summer, potentially influencing the reduction in κphy of atmospheric aerosols. To our knowledge, this is the first study to analyze the monthly and seasonal variation of aerosol hygroscopicity calculated using long-term microphysical data, and this result provides evidence that changes in monthly and seasonal hygroscopicity variation occur depending on chemical composition.

2025

Methane emissions from Australia estimated by inverse analysis using in-situ and Satellite (GOSAT) atmospheric observations

Wang, Fenjuan; Maksyutov, Shamil; Janardanan, Rajesh; Ito, Akihiko; Morino, Isamu; Yoshida, Yukio; Someya, Yu; Tohjima, Yasunori; Kelly, Bryce F. J.; Kaiser, Johannes; Xin, Lan; Mammarella, Ivan; Matsunaga, Tsuneo

Australia has significant sources of atmospheric methane (CH₄), driven by extensive coal and natural gas production, livestock, and large-scale fires. Accurate quantification and characterization of CH₄ emissions are critical for effective climate mitigation strategies in Australia. In this study, we employed an inverse analysis of atmospheric CH₄ observations from the GOSAT satellite and surface measurements from 2016 to 2021 to assess CH₄ emissions in Australia. The inversion process integrates anthropogenic and natural emissions as prior estimates, optimizing them with the NIES-TM-FLEXPART-variational model (NTFVAR) at a resolution of up to 0.1° × 0.1°. We validated the performance of our inverse model using data obtained from the United Nations Environment Program Methane Science (UNEP), Airborne Research Australia 2018 aircraft-based atmospheric CH₄ measurement campaigns. Compared to prior emission estimates, optimized emissions dramatically enhanced the accuracy of modeled concentrations, aligning them much better with observations. Our results indicate that the estimated inland CH4 emissions in Australia amount to 6.84 ± 0.51 Tg CH4 yr−1 and anthropogenic emissions amount to 4.20 ± 0.08 Tg CH4 yr−1, both slightly lower than the values reported in existing inventories. Moreover, our results unveil noteworthy spatiotemporal characteristics, such as upward corrections during the warm season, particularly in Southeastern Australia. During the three most severe months of the 2019–2020 bushfire season, emissions from biomass burning surged by 0.68 Tg, constituting over 71% of the total emission increase. These results highlight the importance of continuous observation and analysis of sectoral emissions, particularly near major sources, to guide targeted emission reduction strategies. The spatiotemporal characteristics identified in this study underscore the need for adaptive and region-specific approaches to CH₄ emission management in Australia.

2025

Publication
Year
Category