Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9768 publications. Showing page 247 of 391:

Publication  
Year  
Category

European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe.

Zanatta, M.; Gysel, M.; Bukowiecki, N.; Müller, T.; Weingartner, E.; Areskoug, H.; Fiebig, M.; Yttri, K.E.; Mihalopoulos, N.; Kouvarakis, G.; Beddows, D.; Harrison, R.M.; Cavalli, F.; Putaud, J.P.; Spindler, G.; Wiedensohler, A.; Alastuey, A.; Pandolfi, M.; Sellegri, K.; Swietlicki, E.; Jaffrezo, J.L.; Baltensperger, U.; Laj, P. A.

2016

Monitoring of size-segregated particulate matter fractions with optical instruments in urban areas.

Dunea, D.; Savu, T.; Marsteen, L.

The assessment of harmful PM concentrations i.e. particles with an aerodynamic diameter below 2.5 µm, requires continuous monitoring conducted for 24 hours a day, for 365 days a year. Monitoring campaigns for screening the PM levels in a particular urban area facilitate the conceiving of a continuous monitoring plan by establishing where to deploy optimally the optical instruments for on-line measurement. The paper presents the practical efficiency of the outdoor monitoring of PM size fractions using a new optical equipment i.e. Dusttrak DRX 8533 with environmental enclosure and heating module. The experiments were carried out in Targoviste city, Romania, between 2014 and 2015 within the first two phases of the ROkidAIR project (http://www.rokidair.ro) to perform a screening of the PM concentrations existing in these urban areas and to calibrate the prototype of the PM2.5 microstation developed within the project .The utilization of the DustTrak instrument showed that in heavy traffic conditions without significant industrial emissions, the most frequent PM fraction is the submicrometric one (PM1).The results pointed out the usefulness of monitoring four size segregated mass fractions and their relationship with the potential PM emission sources. Outdoor PM2.5 measurements provide key information for evaluating population exposure, planning of air quality and establishing of reliable measures that allow the lowering of PM emission.

2016

Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity.

Zasonska, B.A.; Lískova, A.; Kuricova, M.; Tulinska, J.; Pop-Georgievski, O.; Ciampor, F.; Vavra, I.; Dusinska, M.; Ilavska, S.; Horvathova, M.; Horak, D.

2016

Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records.

Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Bourassa, A. E.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.; Hoppel, K. W.; Johnson, B. J.; Kyrölä, E.; Leblanc, T.; Lichtenberg, G.; Marchand, M.; McElroy, C. T.; Murtagh, D.; Nakane, H.; Portafaix, T.; Querel, R.; Russell III, J. M.; Salvador, J.; Smit, H. G. J.; Stebel, K.; Steinbrecht, W.; Strawbridge, K. B.; Stübi, R.; Swart, D. P. J.; Taha, G.; Tarasick, D. W.; Thompson, A. M.; Urban, J.; van Gijsel, J. A. E.; Van Malderen, R.; von der Gathen, P.; Walker, K. A.; Wolfram, E.; Zawodny, J. M.

2016

Modeling the global atmospheric transport and deposition of mercury to the Great Lakes.

Cohen, M. D.; Draxler, R. R.; Artz, R. S.; Blanchard, P.; Gustin, M. S.; Han, Y.-J.; Holsen, T. M.; Jaffe, D. A.; Kelley, P.; Lei, H.; Loughner, C. P.; Luke, W. T.; Lyman, S. N.; Niemi, D.; Pacyna, J. M.; Pilote, M.; Poissant, L.; Ratte, D.; Ren, X.; Steenhuisen, F.; Steffen, A.; Tordon, Wilson, S. J.

2016

Characterization of gas-phase organics using proton transfer raction time-of-flight mass spectrometry: cooking emissions.

Klein, F.; Platt, S.M.; Farren, N.J.; Detournay, A.; Bruns, E.A.; Bozzetti, C.; Daellenbach, K.R.; Kilic, D.; Kumar, N.K.; Pieber, S.M.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Hamilton, J.F.; Baltensperger, U.; Prévôt, A.S.H.; El Haddad, I.,.

2016

Research and monitoring of atmospheric persistent organic pollutants (POPs) in the polar atmosphere. From pole to pole

Kallenborn, R.; Hung, H.; Harner, T. Bohlin-Nizzetto, P.; Nash, S.B.

2016

Personal exposure to PM 2.5 and benzo[a]pyrene in Ostrava, Czech Republic.

Svecova, V.; Solansky, I.; Cole-Hunter, T.; the CITI-SENSE Consortium, Sram, R.J.; Bartonova, A.

2016

Air quality monitoring in the border areas of Norway and Russia - progress report April 2015-March 2016. NILU rapport

Berglen, T.F.; Dauge, F.; Andresen, E.; Nilsson, L.O.; Svendby, T.M.; Tønnesen, D.; Vadset, M.; Våler, R.L.

The nikkel smelters in NW Russia emit large quantities of sulphur dioxide (SO2) and heavy metals. These emissions lead to enhanced concentrations of environmental pollutants in the border areas. The monitoring program shows that air quality in Karpdalen violates Norwegian threshold values for SO2 hourly mean values in 2015, seasonal mean winter 2015/16 and hourly mean and daily mean values in 2016 (as of 31st March).

2016

Total ozone and UV measurements at the Norwegian Troll Station, Antarctica.

Hansen, G.; Svendby, T.; Dahlback, A.; Edvardsen, K.

2016

Oslolufta på helsa løs?

Høiskar, B. A. K.; Sundvor, I.; Sousa Santos, G.; Vogt, M.

2016

Environmental chemistry.

Warner, N. A.; Herzke, D.

2016

Ground based perspective during the AROMAT 2015 campaign.

Belegante, L.; Vasilescu, J.; Nicolae, D.; Talianu, C.; Nemuc,A.; Radu, C.; Ajtai, N.; Merlaud, A.; Dekemper, E.; Stebel, K.

2016

Global and gene specific DNA methylation in breast cancer cells was not affected during epithelial-to-mesenchymal transition in vitro.

Smolkova, B.; Miklikova, S.; Kajabova, V. H.; Babelova, A.; El Yamani, N.; Zduriencikova, M.; Fridrichova, I.; Zmetakova, I.; Krivulcik, T.; Kalinkova, L.; Matuskova, M.; Kucerova, M.; Dusinska, M.

2016

Modelling road dust emission abatement measures using the NORTRIP model: Vehicle speed and studded tyre reduction.

Norman, M.; Sundvor, I.; Denby, B.R.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.

2016

Arctic air pollution: Challenges and opportunities.

Arnold, S. R.; Law, K. S.; Brock, C. A.; Thomas, J. L.; Starkweather, S. M.; Salzen, K. von, Stohl, A.; Sharma, S.; Lund, M. T.; Flanner, M. G.; Petäjä, T.; Tanimoto, H.; Gamble, J.; Dibb, J. E.; Melamaed, M.; Johnson, N.; Fidel, M.; Tynkkynen, V.-P.; Baklanov, A.; Eckhardt, S.; Monks, S. A.; Browse, J.; Bozem, H.

2016

Potential improvements on benzo(a)pyrene (BaP) mapping. ETC/ACM Technical Paper, 2016/3

Horálek, J.; Guerreiro, C.; de Leeuw, F.; de Smet, P.

2016

Air quality calculations for Oslo Airport. NILU rapport

Tønnesen, D.; Hak, C.; Lopez-Aparicio, S.; Sousa Santos, G.; Vogt, M.; Berdal, M.; Lindholm, M.

Modelling of emission and dispersion shows that the largest emissions of NOX are caused by airplanes during take-off and final approach, but these emissions have little impact on ground level concentrations. The highest modelled concentration levels are located within the airport area, and are of similar size as concentrations modelled in central areas of Norwegian medium sized cities. The largest contribution comes from the aircrafts. The concentration of PM is largely decided by the background contribution. Occurrence of odour in the vicinity of the airport can be explained by the emission of hydrocarbons from aircraft in taxi-modes. Occurrence of darkening on house walls in vicinity of and further away from the airport has been investigated. It is mainly caused by growth of fungus. Investigation of possible impact from airport activity on fresh water bodies indicate that the glycol content in the use of de-icing of aircraft has the largest potential impact.

2016

Miljøgifter.

Hanssen, L.

2016

Publication
Year
Category