Found 9976 publications. Showing page 284 of 400:
2014
2010
Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO2 in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO2-C yr−1) and sources of CH4 (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH4-C yr−1) and N2O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N2O-N yr−1). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH4 dominates the total forcing. The net CO2 sink in Boreal forests and wetlands is largely offset by fires and inland water CO2 emissions as well as CH4 emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.
2024
2015
Persistent organic contaminant levels in atmospheric samples from Bjørnøya (Bear island) and the Zeppelin Mountain research station (Ny-Ålesund, Svalbard). AMAP Report, 2002:2
2002
2007
2016
2004
2006
2011
2008
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs) and organophosphate esters (OPEs) were assessed in blood plasma and feathers of 19 adult black-legged kittiwakes (Rissa tridactyla) breeding in two colonies (Blomstrandhalvøya and Krykkjefjellet) at the Arctic archipelago, Svalbard. Potential associations with body condition index (BCI) and thyroid hormones were investigated. All compound classes were detected in both blood plasma and feathers, but due to low sample size and volumes, OPEs could only be quantified in four individuals, warranting larger follow-up studies. Kittiwakes breeding at Blomstrandhalvøya had significantly higher concentrations of organic pollutants in blood plasma than kittiwakes breeding at Krykkjefjellet (p < 0.001). Concentrations in blood plasma and feathers did not significantly correlate for any of the investigated compounds, and feather concentrations did not differ significantly between the colonies. This suggests that pollutant levels in adult kittiwake feathers do not reflect local contamination at breeding sites and are as such not useful to monitor local contamination at Svalbard. Significant negative associations between BCI and most pollutants were found in both populations, whereas significant correlations between the BCI, the ratio of total triiodothyronine to free triiodothyronine (TT3:fT3), and several pollutants were only found for kittiwakes from Blomstrandhalvøya (all r ≥ −0.60 and p ≤ 0.05). This indicates that higher levels of circulating pollutants during the breeding period covary with the TT3: fT3 ratio, and may act as an additional stressor during this period.
2018
2017
2002
2011
2015