Found 9895 publications. Showing page 293 of 396:
Instrumenter som skal brukes til måling av lokal luftkvalitet i henhold til forurensningsforskriften skal være godkjente for dette formålet. Norge har per i dag ingen godkjenningsordning. Inntil videre godkjennes derfor de instrumenter som det svenske referanselaboratoriet for luft har godkjent.
Denne rapporten beskriver hvordan en godkjenningsordning kan etableres i Norge, basert på rutinen brukt i Sverige, gjennom å belyse den lovmessige forankringen og prosedyren for typegodkjenning. Oppgavene og ansvarsfordelingen mellom den ansvarlige forvaltningsmyndigheten (Miljødirektoratet) og Referanselaboratoriet er forklart.
Miljødirektoratet rapport, M-1327/2019.
NILU
2019
Monitoring of environmental contaminants in air and precipitation, annual report 2018
This report presents environmental monitoring data from 2018 and time-trends for the Norwegian programme for Long-range atmospheric transported contaminants. The results cover 200
organic compounds (regulated and non-regulated), 11 heavy metals, and organic chemicals of potential Arctic concern.
NILU
2019
This report presents the results of the European Union Action
on Black Carbon in the Arctic (EUA-BCA) initiative’s review of
observation capacities and data availability for black carbon in the Arctic region.
EUA-BCA/AMAP
2019
2019
Recent Trends in Stratospheric Chlorine From Very Short-Lived Substances
Very short‐lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2‐dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high‐altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid‐2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long‐lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year‐to‐year growth rates are variable and were small or negative in the period 2015–2017. Whether this is a transient effect, or longer‐term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004–2017) is −5.2% per decade with VSLS included, in good agreement to ACE satellite data (−4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid‐2000s.
American Geophysical Union (AGU)
2019
2019
Exploring the prospects for adaptive governance in marine transboundary conservation in East Africa
Elsevier
2019
2019
2019
Screening program 2018. Volatiles, Gd, BADGE, UV filters, Additives, and Medicines.
This screening project has focused on the occurrence and environmental fate of chemicals with possible PBT-properties. Samples were from indoor environments, surface waters, municipal wastewater, and the receiving marine environment. Some of the detected chemicals need to be studied in more detail. One UV-filter compound shows a potential environmental risk.
NILU
2019
NILU’s Environmental Management Report 2018
One of NILU’s main goals is to study the impact of pollution and supply decision-makers with a sound scientific platform for choosing measures to reduce the negative impacts. Furthermore, it is very important for the institute to have control of the impact the institute’s own activities may have on the environment and to reduce negative impacts as far as possible.
NILU has for many years been working to improve the status of the environment and to reduce negative impacts. In order to
take this one step further, it was decided that the institute should restructure the work according to a relevant environmental standard and to seek certification according to the same standard.
The chosen standard is ISO 14001 (Environmental management systems—Requirements with guidance for use) and NILU
achieved certification according to this standard in October 2010. This report summarizes the results of the system in 2018.
NILU
2019
Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis
Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.
We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.
The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.
Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.
2019
2019
Abating N in Nordic agriculture - Policy, measures and way forward
During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years.
The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P.
The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries.
To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country.
The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.
Elsevier
2019
2019
2019
2019