Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 10066 publications. Showing page 319 of 403:

Publication  
Year  
Category

Evaluation of a city-scale forecast system for air quality in Hamburg

Karl, Matthias; Ramacher, Martin O. P.; Hamer, Paul David; Athanasopoulou, E.; Speyer, O.; Matthias, Volker

2020

Technical and environmental viability of a European CO2 EOR system

Thorne, Rebecca Jayne; Sundseth, Kyrre; Bouman, Evert; Czarnowska, Lucyna; Mathisen, Anette; Skagestad, Ragnhild; Stanek, Wojciech; Pacyna, Jozef M; Pacyna, Elisabeth G

Captured CO2 from large industrial emitters may be used for enhanced oil recovery (EOR), but as of yet there are no European large-scale EOR systems. Recent implementation decisions for a Norwegian carbon capture and storage demonstration will result in the establishment of a central CO2 hub on the west-coast of Norway and storage on the Norwegian Continental Shelf. This development may continue towards a large-scale operation involving European CO2 and CO2 EOR operation. To this end, a conceptual EOR system was developed here based on an oxyfuel power plant located in Poland that acted as a source for CO2, coupled to a promising oil field located on the Norwegian Continental Shelf. Lifecycle assessment was subsequently used to estimate environmental emissions indicators. When averaged over the operational lifetime, results show greenhouse gas (GHG) emissions of 0.4 kg CO2-eq per kg oil (and n kWh associated electricity) produced, of which 64 % derived from the oxyfuel power plant. This represents a 71 % emission reduction when compared to the same amount of oil and electricity production using conventional technology. Other environmental impact indicators were increased, showing that this type of CO2 EOR system may help reach GHG reduction targets, but care should be taken to avoid problem shifting.

2020

Impact of solar irradiance and geomagnetic activity on polar NOx, ozone and temperature in WACCM simulations

Tartaglione, N.; Toniazzo, T.; Orsolini, Y.; Otterå, O.H.

The response of the atmosphere to solar irradiance and geomagnetic activity is analyzed in experiments with the Whole Atmosphere Community Climate Model (WACCM) under idealized forcings. Four experiments are carried out combining high (H) and low (L) solar radiative forcing with high (7) and low (3) geomagnetic activity: H7 (with high radiative forcing and high geomagnetic activity), H3, (high/low), L7 (low/high), and L3 (low/low). The comparison between these experiment is used to assess the effects of solar radiative forcing and geomagnetic activity mainly on the stratosphere. A two-step Monte Carlo-based statistical test, which defines an impact score, is used to assess statistically significant impacts on regional scales, on pressure levels, for a few key model variables, like NOx, ozone, and temperature.

Under low solar forcing (L7/L3), a statistically significant relationship between geomagnetic activity and NOx is found in both hemispheres and for all seasons. An equally strong relationship is lacking for ozone and temperature when analyzing these fields on isobaric levels. A statistically significant impact on stratospheric ozone is only seen in austral winter and spring. However, vertical cross sections show statistically significant impact on temperature and ozone mainly in the southern hemisphere (SH) during austral winter and the following spring.

Significant and persistent signals in both SH NOx and ozone concentrations are only produced when the effect of high solar forcing is added to high geomagnetic activity (H7). In this case, statistically significant differences are also found for mesospheric temperatures, ozone and NOx. This latter result appears also under low geomagnetic activity as a result of solar forcing alone, suggesting that solar irradiance significantly affects NOx, ozone and stratospheric temperatures and, in some seasons, even tropospheric temperature.

In summary, geomagnetic activity primarily affects NOx and ozone concentrations in the SH. Solar maximum conditions can reduce the amount of NOx in the stratosphere because of higher ozone production. Thus, we conclude that correlations between changes in solar irradiance and geomagnetic activity are important with respect to their effects on the atmosphere. In particular, geomagnetic activity can modulate atmospheric ozone concentrations and other associated stratospheric and tropospheric variables under conditions of high solar activity.

2020

Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations

Thompson, Rona Louise; Broquet, G; Gerbig, C.; Koch, T; Lang, M.; Monteil, Guillaume; Munassar, S; Nickless, Alecia; Scholze, M.; Ramonet, Michel; Karstens, Ute; Schaik, Erik van; Wu, Z; Rödenbeck, C.

The 2018 drought was one of the worst European droughts of the twenty-first century in terms of its severity, extent and duration. The effects of the drought could be seen in a reduction in harvest yields in parts of Europe, as well as an unprecedented browning of vegetation in summer. Here, we quantify the effect of the drought on net ecosystem exchange (NEE) using five independent regional atmospheric inversion frameworks. Using a network of atmospheric CO2 mole fraction observations, we estimate NEE with at least monthly and 0.5° × 0.5° resolution for 2009–2018. We find that the annual NEE in 2018 was likely more positive (less CO2 uptake) in the temperate region of Europe by 0.09 ± 0.06 Pg C yr−1 (mean ± s.d.) compared to the mean of the last 10 years of −0.08 ± 0.17 Pg C yr−1, making the region close to carbon neutral in 2018. Similarly, we find a positive annual NEE anomaly for the northern region of Europe of 0.02 ± 0.02 Pg C yr−1 compared the 10-year mean of −0.04 ± 0.05 Pg C yr−1. In both regions, this was largely owing to a reduction in the summer CO2 uptake. The positive NEE anomalies coincided spatially and temporally with negative anomalies in soil water. These anomalies were exceptional for the 10-year period of our study.

This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.

2020

FLEXPART v10.1 simulation of source contributions to Arctic black carbon

Zhu, Chunmao; Kanaya, Yugo; Takigawa, Masayuki; Ikeda, Kohei; Tanimoto, Hiroshi; Taketani, Fumikazu; Miyakawa, Takuma; Kobayashi, Hideki; Pisso, Ignacio

The Arctic environment is undergoing rapid changes such as faster warming than the global average and exceptional melting of glaciers in Greenland. Black carbon (BC) particles, which are a short-lived climate pollutant, are one cause of Arctic warming and glacier melting. However, the sources of BC particles are still uncertain. We simulated the potential emission sensitivity of atmospheric BC present over the Arctic (north of 66∘ N) using the FLEXPART (FLEXible PARTicle) Lagrangian transport model (version 10.1). This version includes a new aerosol wet removal scheme, which better represents particle-scavenging processes than older versions did. Arctic BC at the surface (0–500 m) and high altitudes (4750–5250 m) is sensitive to emissions in high latitude (north of 60∘ N) and mid-latitude (30–60∘ N) regions, respectively. Geospatial sources of Arctic BC were quantified, with a focus on emissions from anthropogenic activities (including domestic biofuel burning) and open biomass burning (including agricultural burning in the open field) in 2010. We found that anthropogenic sources contributed 82 % and 83 % of annual Arctic BC at the surface and high altitudes, respectively. Arctic surface BC comes predominantly from anthropogenic emissions in Russia (56 %), with gas flaring from the Yamalo-Nenets Autonomous Okrug and Komi Republic being the main source (31 % of Arctic surface BC). These results highlight the need for regulations to control BC emissions from gas flaring to mitigate the rapid changes in the Arctic environment. In summer, combined open biomass burning in Siberia, Alaska, and Canada contributes 56 %–85 % (75 % on average) and 40 %–72 % (57 %) of Arctic BC at the surface and high altitudes, respectively. A large fraction (40 %) of BC in the Arctic at high altitudes comes from anthropogenic emissions in East Asia, which suggests that the rapidly growing economies of developing countries could have a non-negligible effect on the Arctic. To our knowledge, this is the first year-round evaluation of Arctic BC sources that has been performed using the new wet deposition scheme in FLEXPART. The study provides a scientific basis for actions to mitigate the rapidly changing Arctic environment.

2020

Slow Eastward-Propagating Planetary Waves Prior to Sudden Stratospheric Warmings

Rhodes, C. Todd; Limpasuvan, Varavut; Orsolini, Yvan

2020

Impact of Medium-Energy Electron Precipitation on Ozone and Middle Atmosphere Dynamics in WACCM Simulations

Guttu, Sigmund; Orsolini, Yvan J.; Stordal, Frode; Limpasuvan, Varavut; Marsh, Daniel R.

2020

The N2O Budget

Thompson, Rona Louise

2020

Klimagasser i atmosfæren

Myhre, Cathrine Lund (interview subject); Molde, Eivind (journalist)

2020

Tre uomtvistelige fakta

Furevik, Tore; Halvorsen, Kristin; Skålin, Roar; Johnny, Johannessen; Nygaard, Kari; Støle, Elisabeth Maråk; Myklebust, Norunn Sæther; Bentzen, Greta; Misund, Ole Arve; Borg, Anne; Gjørv, Alexandra Bech; Olsen, Dag Rune; Stølen, Svein

2020

Validation of satellite-constrained ammonia using a CTM and ground and satellite measurements

Evangeliou, Nikolaos; Balkanski, Yves; Eckhardt, Sabine; Hauglustaine, Didier; Cozic, Anne; Stohl, Andreas

2020

A study of the relative expanded uncertainty formula for comparing low-cost sensor and reference measurements

Walker, Sam-Erik; Schneider, Philipp

In this report, we investigate the relative expanded uncertainty (REU) formula for comparing low-cost sensors (microsensors) and reference measurements. The purpose of the REU formula is to check if microsensor measurements follow the data quality objective (DQO) of the European Air Quality Directive 2008/50/EC to be considered equivalent to a reference instrument. The project aimed to obtain a good understanding of the REU formula for its proper use in current and future projects involving microsensors.

NILU

2020

Measurements of non-methane hydrocarbons (NMHC) in Abu Dhabi. Final assessment report.

Solberg, Sverre; Hak, Claudia; Schmidbauer, Norbert; Gopinath, Vinod; Bartonova, Alena

NILU

2020

Car Tire Crumb Rubber: Does Leaching Produce a Toxic Chemical Cocktail in Coastal Marine Systems?

Halsband-Lenk, Claudia; Sørensen, Lisbet; Booth, Andy; Herzke, Dorte

Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied to synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g., pigments, oils, resins), ELTs contain a range of other organic compound and heavy metal additives. While previous environmental impact studies on CRG have focused on terrestrial soil and freshwater ecosystems, many sites applying CRG in Norway are coastal. The current study investigated the organic chemical and metal additive content of ‘pristine’ and ‘weathered’ CRG and their seawater leachates, as well as uptake and effects of leachate exposure using marine copepods (Acartia and Calanus sp.). A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g., bisphenols). ICP-MS analysis revealed g kg–1 quantities of Zn and mg kg–1 quantities of Fe, Mn, Cu, Co, Cr, Pb, and Ni in the CRG. A cocktail of organic additives and metals readily leached from the CRG into seawater, with the most abundant leachate components being benzothiazole and Zn, Fe, Co (metals), as well as detectable levels of PAHs and phenolic compounds. Concentrations of individual components varied with CRG source material and CRG to seawater ratio, but benzothiazole and Zn were typically the organic and metal components present at the highest concentrations in the leachates. While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30-day period. Marine copepods exposed to high CRG leachate concentrations exhibited high mortalities within 48 h. The smaller lipid-poor Acartia had a higher sensitivity to leachates than the larger lipid-rich Calanus, indicating species-specific differences in vulnerability to leachates. The effect on survival was alleviated at lower leachate concentrations, indicating a dose-response relationship. Benzothiazole and its derivatives appear to be of concern owing to their proven toxicity, while bisphenols are also known to be toxic and were enriched in the leachates relative to the other compounds in the CRG.

2020

Multidecadal trend analysis of in situ aerosol radiative properties around the world

Coen, Martine Collaud; Andrews, Elisabeth; Alastuey, Andrés; Arsov, Todor Petkov; Backman, John; Brem, Benjamin T.; Bukowiecki, Nicolas; Couret, Cedric; Eleftheriadis, Konstantinos; Flentje, Harald; Fiebig, Markus; Gysel-Beer, Martin; Hand, Jenny; Hoffer, András; Hooda, Rakesh; Hueglin, Christoph; Joubert, Warren; Keywood, Melita; Kim, Jeong Eun; Kim, Sang-Woo; Labuschagne, Casper; Lin, Neng-Huei; Lin, Yong; Myhre, Cathrine Lund; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mayol-Bracero, Olga L.; Mihalopoulos, Nikos; Pandolfi, Marco; Prats, Natalia; Prenni, Anthony J.; Putaud, Jean-Philippe; Ries, Ludwig; Reisen, Fabienne; Sellegri, Karine; Sharma, Sangeeta; Sheridan, Patrick; Sherman, James Patrick; Sun, Junying; Titos, Gloria; Torres, Elvis; Tuch, Thomas; Weller, Rolf; Wiedensohler, Alfred; Zieger, Paul; Laj, Paolo

In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.

2020

Spatial trends of chlorinated paraffins and dechloranes in soil and air from Tanzania

Nipen, Maja; Bohlin-Nizzetto, Pernilla; Borgen, Anders; Borgå, Katrine; Jørgensen, Susanne Jøntvedt; Mmochi, Aviti John; Mwakalapa, Eliezer Brown; Schlabach, Martin; Vogt, Rolf David; Breivik, Knut

2020

Impact of 3D cloud structures on tropospheric NO2 column measurements from UV-VIS sounders

Yu, Huan; Kylling, Arve; Emde, Claudia; Mayer, Bernhard; Roozendael, Michel Van; Stebel, Kerstin; Veihelmann, Ben

2020

Occurrence of microplastics in filet and organs of farmed and wild salmon

Haave, Marte; Bjorøy, Ørjan; Herzke, Dorte; Kögel, Tanja; Nikiforov, Vladimir; Øysæd, Kjell Birger

2020

Cyclic and Linear Siloxanes in Indoor Environments: Occurrence and Human Exposure

Cincinelli, Alessandra; Martellini, Tania; Scopetani, Costanza; Guerranti, C.; Katsoyiannis, Athanasios A.

2020

Tidenes miljøgave kommer lille julaften

Berglen, Tore Flatlandsmo; Aspholm, Paul Eric (interview subjects); Andreassen, Erik; Kalinina, Kristina (journalists)

2020

Cars Emit More Than Carbon Pollution—They Release Microplastic, Too

Evangeliou, Nikolaos (interview subject); Funes, Yessenia (journalist)

2020

Esso Slagentangen. Resultater 2019 og oppsummering 2017-2019.

Berglen, Tore Flatlandsmo; Nilsen, Anne-Cathrine; Våler, Rita Larsen

NILU

2020

Publication
Year
Category