Found 9895 publications. Showing page 355 of 396:
2004
To estimate the effect of vegetation stress and changes in biogenic volatile organic compound (BVOC) emissions on urban ozone (O3) levels we perform a systematic, observation-based analysis of the relationship between formaldehyde (HCHO) mixing ratios, meteorological parameters, measurement-based drought indicators and O3 over the central European city of Vienna, Austria. In addition, numerical models SURface EXternalisée (SURFEX), Model of Emissions of Gases and Aerosols from Nature (MEGAN) Vers.2.1 and 3 and MOdèle de Chimie A Grande Echelle (MOCAGE) are combined to estimate the soil moisture, the spatial distribution and drought response of isoprene emissions, and the resulting distribution of HCHO in the atmosphere. To analyse the effect of drought during spring and summer we contrast observations during dry and reference years. Our results show that the observed HCHO can be explained using the simulated isoprene emissions as well as observed and simulated vegetation drought responses. HCHO mixing ratios differ strongly between dry and reference seasons. Spring-time precipitation deficits facilitate reduced HCHO mixing ratios due to delayed and weakened plant growth. In consequence also O3 burdens are lowered due to reduced BVOC precursor emissions. These reductions occur despite radiation levels being higher than during the reference year, illustrating the strong potential of spring-time BVOC emissions to modulate urban O3 burdens. Conversely, during summer elevated O3 levels occur during local drought conditions. These are driven by advected isoprene originating from nearby forest areas, which are not affected by drought. Our results regarding elevated summer-time O3 burdens under vegetation heat and drought stress are in good agreement with previous work.
Elsevier
2023
2010
The Integrated Carbon Observation System in Europe
Since 1750, land use change and fossil fuel combustion has led to a 46 % increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limiting global temperature increases to well below 2°C above pre-industrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere is sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
American Meteorological Society (AMS)
2021
The Kongsfjorden system - a flagship programme for Ny-Ålesund. A concluding document from Workshop 28-31 March, 2008. Kortrapport 11/2009
2009
2006
2006
The Lagrangian particle dispersion model FLEXPART version 10.4
The Lagrangian particle dispersion model FLEXPART in its original version in the mid-1990s was designed for calculating the long-range and mesoscale dispersion of hazardous substances from point sources, such as those released after an accident in a nuclear power plant. Over the past decades, the model has evolved into a comprehensive tool for multi-scale atmospheric transport modeling and analysis and has attracted a global user community. Its application fields have been extended to a large range of atmospheric gases and aerosols, e.g., greenhouse gases, short-lived climate forcers like black carbon and volcanic ash, and it has also been used to study the atmospheric branch of the water cycle. Given suitable meteorological input data, it can be used for scales from dozens of meters to global. In particular, inverse modeling based on source–receptor relationships from FLEXPART has become widely used. In this paper, we present FLEXPART version 10.4, which works with meteorological input data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) and data from the United States National Centers of Environmental Prediction (NCEP) Global Forecast System (GFS). Since the last publication of a detailed FLEXPART description (version 6.2), the model has been improved in different aspects such as performance, physicochemical parameterizations, input/output formats, and available preprocessing and post-processing software. The model code has also been parallelized using the Message Passing Interface (MPI). We demonstrate that the model scales well up to using 256 processors, with a parallel efficiency greater than 75 % for up to 64 processes on multiple nodes in runs with very large numbers of particles. The deviation from 100 % efficiency is almost entirely due to the remaining nonparallelized parts of the code, suggesting large potential for further speedup. A new turbulence scheme for the convective boundary layer has been developed that considers the skewness in the vertical velocity distribution (updrafts and downdrafts) and vertical gradients in air density. FLEXPART is the only model available considering both effects, making it highly accurate for small-scale applications, e.g., to quantify dispersion in the vicinity of a point source. The wet deposition scheme for aerosols has been completely rewritten and a new, more detailed gravitational settling parameterization for aerosols has also been implemented. FLEXPART has had the option of running backward in time from atmospheric concentrations at receptor locations for many years, but this has now been extended to also work for deposition values and may become useful, for instance, for the interpretation of ice core measurements. To our knowledge, to date FLEXPART is the only model with that capability. Furthermore, the temporal variation and temperature dependence of chemical reactions with the OH radical have been included, allowing for more accurate simulations for species with intermediate lifetimes against the reaction with OH, such as ethane. Finally, user settings can now be specified in a more flexible namelist format, and output files can be produced in NetCDF format instead of FLEXPART's customary binary format. In this paper, we describe these new developments. Moreover, we present some tools for the preparation of the meteorological input data and for processing FLEXPART output data, and we briefly report on alternative FLEXPART versions.
2019
2013
2016
The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics.
2013
2017
2012
2012
2013