Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2162 publications. Showing page 13 of 217:

Publication  
Year  
Category

Hydro Aluminium AS. Measurements of CF4 and C2F6 emissions from Norsk Hydro's aluminium smelter at Husnes, Norway.

Schmidbauer, Norbert; Hermansen, Ove; Lunder, Chris Rene

NILU and Hydro Aluminium performed a test campaign for measurements of CF4 and C2F6 for stack emissions at Husnes Aluminium Smelter. Time-integrated samples were taken with evacuated canisters combined with low-flow restrictors for continuous sampling periods as long as 6 weeks. The samples were analyzed at NILU with a Medusa preconcentration method combined with GC-MS SIM. As a main conclusion, time integrated sampling together with Medusa GC-MS methodology is a very precise alternative to the traditional attempts to quantify PFC-emission.

NILU

2022

The EmSite model for high resolution emissions from machinery in construction sites

Lopez-Aparicio, Susana; Grythe, Henrik

The report describes the EmSite model developed to estimate exhaust and non-exhaust emissions from non-road mobile machinery (NRMM) used in building and construction. The model is based on a complete national database of the exact location of construction and building activity, machine registries and variables that affect emissions (ground conditions, meteorology, type of ground material). EmSite model allows us to determine, i) the location, area and time of construction projects at fine resolution; ii) energy demand for NRMM; and iii) fuel consumption, air pollutants and GHGs emissions. For exhaust emissions, specific dynamic emission factors for NRMMs were developed. For non-exhaust emissions, an approach based on the Tier 1 (EMEP/EEA Guidebook, 2019) was chosen. EmSite allows for bottom-up estimates for NRMM employed in construction, and the results are comparable with official air pollutant and GHGs emissions.

NILU

2022

Prøvetaking av PM10 i omgivelsene til Brevik bru. 22. sept – 5. okt 2021.

Hak, Claudia; Uggerud, Hilde Thelle; Andresen, Erik; Teigland, Even Kristian; Mortensen, Tore

NILU – Norsk institutt for luftforskning har, på oppdrag fra Statens vegvesen – Drift og vedlikehold sør, utført prøvetaking av PM10 i luft i omgivelsene til Brevik bru mellom Brevik og Stathelle. Målingene ble utført med filterprøvetakere ved 2 steder nedvinds for brua i forhold til lokale hovedvindretninger. Prøvene ble tatt hver dag i perioden 22. september – 5. oktober 2021 for å utrede i hvilken grad prosjekt Brevik bru påfører lokalt miljø støvforurensning som kan medføre helseplager. 18 av de 28 prøvene tatt ble analysert med hensyn på metaller. Det ble ikke funnet sammenheng mellom konsentrasjonsforskjell mellom de to målestedene og vindretning mot et av stedene for de målte komponent

NILU

2022

Utslipp til luft fra Boliden Odda AS. Reviderte spredningsberegninger og konsekvensvurderinger av økte utslipp.

Weydahl, Torleif; Svendby, Tove Marit

NILU - Norsk Institutt for luftforskning har på oppdrag for Boliden Odda AS, utført sprednings- og avsetningsberegninger i forbindelse med utslipp fra sinkproduksjonsanlegget. Studien beregner luftkonsentrasjon og avsetning av svovel (forsuring) og konsentrasjon av metaller/svevestøv ved dagens sinkproduksjon og ved en planlagt utvidelse. Timesmiddel-, døgnmiddel- og årsmiddel-konsentrasjon av SO2 og PM10 er beregnet til å være innenfor grenseverdier og luftkvalitetskriterier ved dagens og utvidet produksjon. Beregningene viser mulig overskridelse av målsetningsverdien for kadmium ved en utvidelse av produksjonen. Utvidelse i produksjon gir et ytterligere bidrag til overskridelsen av tålegrensen (forsuring) i området rundt Odda. Økningen i avsetning forøvrig er beregnet å være i områder hvor tålegrensen er mer robust. Rapporten er en revisjon av NILU-rapport 3/2019.

NILU

2022

European-wide city level air quality mapping. Evaluation of the current mapping methodology with respect to the level of cities and NUTS3 units and suggestions for future.

Horálek, Jan; Schneider, Philipp; Schreiberova, Marketa; Kurfürst, Pavel; Malherbe, Laure

The report evaluates current mapping methodology with respect to city- and NUTS3-levels mapping across Europe. It states that the current mapping can be used at the city and the NUTS3 levels, despite a mild smoothing effect at locations of the measurement stations. However, it suggests a post-processing correction based on the mapping residuals.

A potential new approach for the city ranking have been examined, namely the population-weighted concentration based on the mapping results. While the averaged measurement data from the background stations (as used in the current city ranking) provides a superior information for the whole city in general, the population-weighted concentration also well represents the whole city and gives a consistent information for all cities, including those without station measurements.

Next to this, alternative treatments of rural and urban stations has been evaluated. If the urban traffic areas should be better represented in the final maps, an increased map resolution is recommended.

Several possibilities of future development towards the European-wide city level mapping in a fine resolution have been suggested, namely exploitation of a high-resolution model output in the existing methodology, geostatistical downscaling of the existing spatial maps using fine-resolution proxy datasets and exploitation of existing low-cost sensor networks.

ETC/ATNI

2021

European air quality maps for 2019. PM10, PM2.5, Ozone, NO2 and NOx Spatial estimates and their uncertainties

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Markova, Jana; Schneider, Philipp; Kurfürst, Pavel; Tognet, Frédéric; Schovánková, Jana; Vlcek, Ondrej

The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10) and NO2 (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2019. The report contains also Phytotoxic ozone dose (POD) for wheat, potato and tomato maps and NOx annual average map for 2019. The POD map for tomato is presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005–2019 are summarized. The analysis is based on the interpolation of the annual statistics of the 2019 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2019 in comparison to the five-year average 2014-2018 using the difference maps.

ETC/ATNI

2021

Air quality evolution and trends in Europe in 2005-2019 based on spatial maps. Trend analysis and population exposure using reconstructed consistent data fusion maps for PM10, ozone and NO2

Horálek, Jan; Schreiberova, Marketa; Volná, Vladimíra; Colette, Augustin; Schovánková, Jana; Vlasakova, Leona; Markova, Jana; Schneider, Philipp

This report analyses evolution and trends of air quality in Europe, based on a 15-year time series of spatial data fusion maps for the years 2005-2019. The analysis has been performed for PM10 annual average, the ozone indicator SOMO35 and NO2 annual average. For the purpose of the Eionet Report - ETC/ATNI 2021/11 trend analysis, a consistent reconstruction of the full 15-year time series of air quality maps has been performed, based on a consistent mapping methodology and input data. For the reconstruction, the Regression – Interpolation – Merging Mapping (RIMM) methodology as routinely used in the regular European-wide annual mapping has been applied.

The trend analysis has been performed based on time series of the aggregated data for individual countries, for large European regions and for the entire mapping area, both for spatial and population-weighted aggregations. In addition, maps of trends have been constructed based on the trend estimates for all grid cells of a map.

For the European-wide aggregations across the whole mapping area, statistically significant downward trend have been estimated for PM10 and NO2, while no significant trend was detected in the case of ozone.

ETC/ATNI

2021

Interim European air quality maps for 2020. PM10, NO2 and ozone spatial estimates based on non-validated UTD data.

Horálek, Jan; Schreiberova, Marketa; Vlasakova, Leona; Hamer, Paul David; Schneider, Philipp; Markova, Jana

The report provides interim 2020 maps for PM10 annual average, NO2 annual average and the ozone indicator SOMO35. The maps have been produced based on non-validated Up-To-Date data reported to the AQ e-reporting database (data flow E2a), the CAMS Ensemble Forecast modelling data and other supplementary data including air quality data reported to EMEP. In addition to concentration maps, the inter-annual differences between the years 2019 and 2020 are presented (using the 2019 regular and the 2020 interim maps), as well as European exposure estimates based on the interim maps. The contribution of lockdown measures connected with the Covid-19 pandemic on the change of air pollutant concentrations during the exceptional year 2020 is briefly discussed. The decrease in road transport, aviation and international shipping intensity during the lockdown resulted in a reduction of the NOx emission, mainly in large cities and urbanized areas. Compared to 2019, a general decrease in NO2 annual average concentrations is shown for 2020, as well as a decrease in values of the ozone indicator SOMO35, apart from areas with a steep NO2 decrease. Due to the chemical processes, the decrease in NOX resulted in an ozone increase in these areas. The contribution of lockdown measures on the change of PM10 concentrations is quite complex. On the one hand, there was a decrease in emissions of suspended particles and their precursors due to decrease in transport. On the other hand, higher intensity of residential heating likely led to higher emissions of both suspended particles and their precursors.

ETC/ATNI

2021

Benzo(a)pyrene (BaP) annual mapping. Evaluation of its potential regular updating.

Horálek, Jan; Schreiberova, Marketa; Schneider, Philipp

The report examines the potential regular production of benzo(a)pyrene (BaP) maps at the European scale in line with the operational production of other air quality maps. Stations measuring BaP are relatively scarce at the European scale, so in order to extend the spatial coverage, so-called pseudo station data have been calculated and used together with the actual BaP measurement data. These pseudo station data are derived from PM2.5 or PM10 measurements in locations with no BaP observations.

ETC/ATNI

2021

Long-term trends of air pollutants at national level 2005-2019

Solberg, Sverre; Colette, Augustin

Trend calculations of air pollutants for the periods 2005-2019 have been applied. Sulphur dioxide shows the largest decrease of all pollutants with a reduction of the order of 60-70 %. The agreement between reported emission data and measured concentrations are quite good. For NO2, a mismatch between the trend in air concentrations and NOx emissions is found. While the overall NOx emissions are reported to be reduced by 45 %, the measured NO2 data indicate a decline of the order of 30 % although marked differences between the countries are found. This mismatch could not be explained by changes in meteorology as this is accounted for. Possible reasons for the mismatch could be the NO2/NOx ratio of the emissions, changes in baseline hemispheric ozone concentration and natural emissions. For PM data (PM10 and PM2.5) we find an opposite mismatch, meaning that the PM concentrations show stronger downward trends than the reported emissions. This is likely an effect of the importance of secondary aerosols which are mitigated by other activities than the direct PM emissions. An overall reduction in PM10 of the order of 30-38 % is found during 2005-2019 while the direct emissions give a reduction that is 5-10 percentage units smaller. Similar results are found for PM2.5, but these findings are uncertain due to the less amount of long-term data. For O3, our findings are in line with earlier studies noting that the annual mean ozone concentration has increased while the high peaks have been reduced. But the reduction of the peaks is now within only a few percent and non-significant, while for the 2000-2017 period it was significant and about 10%.

ETC/ATNI

2021

Publication
Year
Category