Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2675 publications. Showing page 30 of 268:

Publication  
Year  
Category

Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds

Motos, Ghislain; Freitas, Gabriel; Georgakaki, Paraskevi; Wieder, Jörg; Li, Guangyu; Aas, Wenche; Lunder, Chris Rene; Krejci, Radovan; Pasquier, Julie Thérèse; Henneberger, Jan; David, Robert Oscar; Ritter, Christoph; Mohr, Claudia; Zieger, Paul; Nenes, Athanasios

The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed “Arctic amplification”. The response of low-level clouds to changing aerosol characteristics throughout the year is therefore an important driver of Arctic change that currently lacks sufficient constraints. As such, during the NASCENT campaign (Ny-Ålesund AeroSol Cloud ExperimeNT) extending over a full year from October 2019 to October 2020, microphysical properties of aerosols and clouds were studied at the Zeppelin station (475 m a.s.l.), Ny-Ålesund, Svalbard, Norway. Particle number size distributions obtained from differential mobility particle sizers as well as chemical composition derived from filter samples and an aerosol chemical speciation monitor were analyzed together with meteorological data, in particular vertical wind velocity. The results were used as input to a state-of-the-art cloud droplet formation parameterization to investigate the particle sizes that can activate to cloud droplets, the levels of supersaturation that can develop, the droplet susceptibility to aerosol and the role of vertical velocity. We evaluate the parameterization and the droplet numbers calculated through a droplet closure with in-cloud in situ measurements taken during nine flights over 4 d. A remarkable finding is that, for the clouds sampled in situ, closure is successful in mixed-phase cloud conditions regardless of the cloud glaciation fraction. This suggests that ice production through ice–ice collisions or droplet shattering may have explained the high ice fraction, as opposed to rime splintering that would have significantly reduced the cloud droplet number below levels predicted by warm-cloud activation theory. We also show that pristine-like conditions during fall led to clouds that formed over an aerosol-limited regime, with high levels of supersaturation (generally around 1 %, although highly variable) that activate particles smaller than 20 nm in diameter. Clouds formed in the same regime in late spring and summer, but aerosol activation diameters were much larger due to lower cloud supersaturations (ca. 0.5 %) that develop because of higher aerosol concentrations and lower vertical velocities. The contribution of new particle formation to cloud formation was therefore strongly limited, at least until these newly formed particles started growing. However, clouds forming during the Arctic haze period (winter and early spring) can be limited by updraft velocity, although rarely, with supersaturation levels dropping below 0.1 % and generally activating larger particles (20 to 200 nm), including pollution transported over a long range. The relationship between updraft velocity and the limiting cloud droplet number agrees with previous observations of various types of clouds worldwide, which supports the universality of this relationship.

2023

From prey to predators: Evidence of microplastic trophic transfer in tuna and large pelagic species in the southwestern Tropical Atlantic

Justino, Anne; Ferreira, Guilherme; Fauvelle, Vincent; Schmidt, Natascha; Lenoble, Veronique; Pelage, Latifa; Martins, Karla; Travassos, Paulo; Lucena-Fredou, Flavia

2023

Plastics as a carrier of chemical additives to the Arctic: Possibilities for strategic monitoring across the circumpolar North

Hamilton, Bonnie M.; Baak, Julia E.; Vorkamp, Katrin; Hammer, Sjúrður; Granberg, Maria; Herzke, Dorte; Provencher, Jennifer F.

Plastic pollution (including microplastics) has been reported in a variety of biotic and abiotic compartments across the circumpolar Arctic. Due to their environmental ubiquity, there is a need to understand not only the fate and transport of physical plastic particles, but also the fate and transport of additive chemicals associated with plastic pollution. Further, there is a fundamental research gap in understanding long-range transport of chemical additives to the Arctic via plastics as well as their behavior under environmentally relevant Arctic conditions. Here, we comment on the state of the science of plastic as carriers of chemical additives to the Arctic, and highlight research priorities going forward. We suggest further research on the transport pathways of chemical additives via plastics from both distant and local sources and laboratory experiments to investigate chemical behavior of plastic additives under Arctic conditions, including leaching, uptake, and bioaccumulation. Ultimately, chemical additives need to be included in strategic monitoring efforts to fully understand the contaminant burden of plastic pollution in Arctic ecosystems.

2023

Added value of the emissions fractions approach when assessing a chemical's potential for adverse effects as a result of long-range transport

Breivik, Knut; McLachlan, Michael S.; Wania, Frank

It is of considerable interest to identify chemicals which may represent a hazard and risk to environmental and human health in remote areas. The OECD POV and LRTP Screening Tool (“The Tool”) for assessing chemicals for persistence (P) and long-range transport potential (LRTP) has been extensively used for combined P and LRTP assessments in various regulatory contexts, including the Stockholm Convention (SC) on Persistent Organic Pollutants (POPs). The approach in The Tool plots either the Characteristic Travel Distance (CTD, in km), a transport-oriented metric, or the Transfer Efficiency (TE, in %), which calculates the transfer from the atmosphere to surface compartments in a remote region, against overall persistence (POV). For a chemical to elicit adverse effects in remote areas, it not only needs to be transported and transferred to remote environmental surface media, it also needs to accumulate in these media. The current version of The Tool does not have a metric to quantify this process. We screened a list of >12 000 high production volume chemicals (HPVs) for the potential to be dispersed, transferred, and accumulate in surface media in remote regions using the three corresponding LRTP metrics of the emission fractions approach (EFA; ϕ1, ϕ2, ϕ3), as implemented in a modified version of The Tool. Comparing the outcome of an assessment based on CTD/TE and POV with the EFA, we find that the latter classifies a larger number of HPVs as having the potential for accumulation in remote regions than is classified as POP-like by the existing approach. In particular, the EFA identifies chemicals capable of accumulating in remote regions without fulfilling the criterion for POV. The remote accumulation fraction of the EFA is the LRTP assessment metric most suited for the risk assessment stage in Annex E of the SC. Using simpler metrics (such as half-life criteria, POV, and LRTP–POV combinations) in a hazard-based assessment according to Annex D is problematic as it may prematurely screen out many of the chemicals with potential for adverse effects as a result of long-range transport.

2023

Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic

Freitas, Gabriel Pereira; Adachi, Kouji; Conen, Franz; Heslin-Rees, Dominic; Krejci, Radovan; Tobo, Yutaka; Yttri, Karl Espen; Zieger, Paul

Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with transmission electronic microscopy analysis supporting the presence of PBAP. We find that PBAP concentrations range between 10−3–10−1 L−1 and peak in summer. Evidences suggest that the terrestrial Arctic biosphere is an important regional source of PBAP, given the high correlation to air temperature, surface albedo, surface vegetation and PBAP tracers. PBAP clearly correlate with high-temperature ice nucleating particles (INP) (>-15 °C), of which a high a fraction (>90%) are proteinaceous in summer, implying biological origin. These findings will contribute to an improved understanding of sources and characteristics of Arctic PBAP and their links to INP.

2023

A flexible algorithm for network design based on information theory

Thompson, Rona Louise; Pisso, Ignacio

A novel method for atmospheric network design is presented, which is based on information theory. The method does not require calculation of the posterior uncertainty (or uncertainty reduction) and is therefore computationally more efficient than methods that require this. The algorithm is demonstrated in two examples: the first looks at designing a network for monitoring CH4 sources using observations of the stable carbon isotope ratio in CH4 (δ13C), and the second looks at designing a network for monitoring fossil fuel emissions of CO2 using observations of the radiocarbon isotope ratio in CO2 (Δ14CO2).

2023

Use of the single cell gel electrophoresis assay for the detection of DNA-protective dietary factors: Results of human intervention studies

Mišík, Miroslav; Staudinger, Marlen; Kundi, Michael; Worel, Nadine; Nersesyan, Armen; Ferk, Franziska; Dusinska, Maria; Azqueta, Amaya; Møller, Peter; Knasmüller, Siegfried

2023

Chlorinated paraffins and dechloranes in free-range chicken eggs and soil around waste disposal sites in Tanzania

Haarr, Ane; Nipen, Maja; Mwakalapa, Eliezer Brown; Borgen, Anders; Mmochi, Aviti J.; Borgå, Katrine

Electronic waste is a source of both legacy and emerging flame retardants to the environment, especially in regions where sufficient waste handling systems are lacking. In the present study, we quantified the occurrence of short- and medium chain chlorinated paraffins (SCCPs and MCCPs) and dechloranes in household chicken (Gallus domesticus) eggs and soil collected near waste disposal sites on Zanzibar and the Tanzanian mainland. Sampling locations included an e-waste facility and the active dumpsite of Dar es Salaam, a historical dumpsite in Dar es Salaam, and an informal dumpsite on Zanzibar. We compared concentrations and contaminant profiles between soil and eggs, as free-range chickens ingest a considerable amount of soil during foraging, with potential for maternal transfer to the eggs. We found no correlation between soil and egg concentrations or patterns of dechloranes or CPs. CPs with shorter chain lengths and higher chlorination degree were associated with soil, while longer chain lengths and lower chlorination degree were associated with eggs. MCCPs dominated the CP profile in eggs, with median concentrations ranging from 500 to 900 ng/g lipid weight (lw) among locations. SCCP concentrations in eggs ranged from below the detection limit (LOD) to 370 ng/g lw. Dechlorane Plus was the dominating dechlorane compound in all egg samples, with median concentrations ranging from 0.5 to 2.8 ng/g lw. SCCPs dominated in the soil samples (400–21300 ng/g soil organic matter, SOM), except at the official dumpsite where MCCPs were highest (65000 ng/g SOM). Concentrations of dechloranes in soil ranged from below LOD to 240 ng/g SOM, and the dominating compounds were Dechlorane Plus and Dechlorane 603. Risk assessment of CP levels gave margins of exposure (MOE) close to or below 1000 for SCCPs at one location.

2023

Does contaminant exposure disrupt maternal hormones deposition? A study on per- and polyfluoroalkyl substances in an Arctic seabird

Jouanneau, William; Léandri-Breton, Don-Jean; Herzke, Dorte; Moe, Børge; Nikiforov, Vladimir; Pallud, Marie; Parenteau, Charline; Gabrielsen, Geir Wing; Chastel, Olivier

Maternal effects are thought to be essential tools for females to modulate offspring development. The selective deposition of avian maternal hormones could therefore allow females to strategically adjust the phenotype of their offspring to the environmental situation encountered. However, at the time of egg formation, several contaminants are also transferred to the egg, including per- and polyfluoroalkyl substances (PFAS) which are ubiquitous organic contaminants with endocrine disrupting properties. It is, however, unknown if they can disrupt maternal hormone deposition. In this study we explored relationships between female PFAS burden and maternal deposition in the eggs of steroids (dihydrotestosterone, androstenedione and testosterone), glucocorticoids (corticosterone) and thyroid hormones (triiodothyronine and thyroxine) in a population of the Arctic-breeding black-legged kittiwake (Rissa tridactyla). Egg yolk hormone levels were unrelated to female hormone plasma levels. Second-laid eggs had significantly lower concentrations of androstenedione than first-laid eggs. Triiodothyronine yolk levels were decreasing with increasing egg mass but increasing with increasing females' body condition. Testosterone was the only transferred yolk hormone correlated to maternal PFAS burden: specifically, we found a positive correlation between testosterone in yolks and circulating maternal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA) and perfluoroundecanoic acid (PFUnA) in first-laid eggs. This correlative study provides a first insight into the potential of some long-chain perfluoroalkyl acids to disrupt maternal hormones deposition in eggs and raises the question about the consequences of increased testosterone deposition on the developing embryo.

2023

Arctic tropospheric ozone: assessment of current knowledge and model performance

Whaley, Cynthia; Law, Kathy S.; Hjorth, Jens Liengaard; Skov, Henrik; Arnold, Stephen R.; Langner, Joakim; Pernov, Jakob Boyd; Bergeron, Garance; Bourgeois, Ilann; Christensen, Jesper H.; Chien, Rong-You; Deushi, Makoto; Dong, Xinyi; Effertz, Peter; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Huey, Greg L.; Im, Ulas; Kivi, Rigel; Marelle, Louis; Onishi, Tatsuo; Oshima, Naga; Petropavlovskikh, Irina; Peischl, Jeff; Plummer, David A.; Pozzoli, Luca; Raut, Jean-Christophe; Ryerson, Tom; Skeie, Ragnhild Bieltvedt; Solberg, Sverre; Thomas, Manu Anna; Thompson, Chelsea R.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; Salzen, Knut von; Tarasick, David

As the third most important greenhouse gas (GHG) after carbon dioxide (CO2) and methane (CH4), tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O3 near the tropopause (∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O3 precursors (CO, NOx, and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and possibly overestimating OH. Throughout the vertical profile (compared to aircraft measurements), the MMM underestimates both CO and NOx but overestimates PAN. Perhaps as a result of competing deficiencies, the MMM O3 matches the observed O3 reasonably well. Our findings suggest that despite model updates over the last decade, model results are as highly variable as ever and have not increased in accuracy for representing Arctic tropospheric O3.

2023

Publication
Year
Category