Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2670 publications. Showing page 30 of 267:

Publication  
Year  
Category

A flexible algorithm for network design based on information theory

Thompson, Rona Louise; Pisso, Ignacio

A novel method for atmospheric network design is presented, which is based on information theory. The method does not require calculation of the posterior uncertainty (or uncertainty reduction) and is therefore computationally more efficient than methods that require this. The algorithm is demonstrated in two examples: the first looks at designing a network for monitoring CH4 sources using observations of the stable carbon isotope ratio in CH4 (δ13C), and the second looks at designing a network for monitoring fossil fuel emissions of CO2 using observations of the radiocarbon isotope ratio in CO2 (Δ14CO2).

2023

Use of the single cell gel electrophoresis assay for the detection of DNA-protective dietary factors: Results of human intervention studies

Mišík, Miroslav; Staudinger, Marlen; Kundi, Michael; Worel, Nadine; Nersesyan, Armen; Ferk, Franziska; Dusinska, Maria; Azqueta, Amaya; Møller, Peter; Knasmüller, Siegfried

2023

Chlorinated paraffins and dechloranes in free-range chicken eggs and soil around waste disposal sites in Tanzania

Haarr, Ane; Nipen, Maja; Mwakalapa, Eliezer Brown; Borgen, Anders; Mmochi, Aviti J.; Borgå, Katrine

Electronic waste is a source of both legacy and emerging flame retardants to the environment, especially in regions where sufficient waste handling systems are lacking. In the present study, we quantified the occurrence of short- and medium chain chlorinated paraffins (SCCPs and MCCPs) and dechloranes in household chicken (Gallus domesticus) eggs and soil collected near waste disposal sites on Zanzibar and the Tanzanian mainland. Sampling locations included an e-waste facility and the active dumpsite of Dar es Salaam, a historical dumpsite in Dar es Salaam, and an informal dumpsite on Zanzibar. We compared concentrations and contaminant profiles between soil and eggs, as free-range chickens ingest a considerable amount of soil during foraging, with potential for maternal transfer to the eggs. We found no correlation between soil and egg concentrations or patterns of dechloranes or CPs. CPs with shorter chain lengths and higher chlorination degree were associated with soil, while longer chain lengths and lower chlorination degree were associated with eggs. MCCPs dominated the CP profile in eggs, with median concentrations ranging from 500 to 900 ng/g lipid weight (lw) among locations. SCCP concentrations in eggs ranged from below the detection limit (LOD) to 370 ng/g lw. Dechlorane Plus was the dominating dechlorane compound in all egg samples, with median concentrations ranging from 0.5 to 2.8 ng/g lw. SCCPs dominated in the soil samples (400–21300 ng/g soil organic matter, SOM), except at the official dumpsite where MCCPs were highest (65000 ng/g SOM). Concentrations of dechloranes in soil ranged from below LOD to 240 ng/g SOM, and the dominating compounds were Dechlorane Plus and Dechlorane 603. Risk assessment of CP levels gave margins of exposure (MOE) close to or below 1000 for SCCPs at one location.

2023

Does contaminant exposure disrupt maternal hormones deposition? A study on per- and polyfluoroalkyl substances in an Arctic seabird

Jouanneau, William; Léandri-Breton, Don-Jean; Herzke, Dorte; Moe, Børge; Nikiforov, Vladimir; Pallud, Marie; Parenteau, Charline; Gabrielsen, Geir Wing; Chastel, Olivier

Maternal effects are thought to be essential tools for females to modulate offspring development. The selective deposition of avian maternal hormones could therefore allow females to strategically adjust the phenotype of their offspring to the environmental situation encountered. However, at the time of egg formation, several contaminants are also transferred to the egg, including per- and polyfluoroalkyl substances (PFAS) which are ubiquitous organic contaminants with endocrine disrupting properties. It is, however, unknown if they can disrupt maternal hormone deposition. In this study we explored relationships between female PFAS burden and maternal deposition in the eggs of steroids (dihydrotestosterone, androstenedione and testosterone), glucocorticoids (corticosterone) and thyroid hormones (triiodothyronine and thyroxine) in a population of the Arctic-breeding black-legged kittiwake (Rissa tridactyla). Egg yolk hormone levels were unrelated to female hormone plasma levels. Second-laid eggs had significantly lower concentrations of androstenedione than first-laid eggs. Triiodothyronine yolk levels were decreasing with increasing egg mass but increasing with increasing females' body condition. Testosterone was the only transferred yolk hormone correlated to maternal PFAS burden: specifically, we found a positive correlation between testosterone in yolks and circulating maternal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA) and perfluoroundecanoic acid (PFUnA) in first-laid eggs. This correlative study provides a first insight into the potential of some long-chain perfluoroalkyl acids to disrupt maternal hormones deposition in eggs and raises the question about the consequences of increased testosterone deposition on the developing embryo.

2023

Arctic tropospheric ozone: assessment of current knowledge and model performance

Whaley, Cynthia; Law, Kathy S.; Hjorth, Jens Liengaard; Skov, Henrik; Arnold, Stephen R.; Langner, Joakim; Pernov, Jakob Boyd; Bergeron, Garance; Bourgeois, Ilann; Christensen, Jesper H.; Chien, Rong-You; Deushi, Makoto; Dong, Xinyi; Effertz, Peter; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Huey, Greg L.; Im, Ulas; Kivi, Rigel; Marelle, Louis; Onishi, Tatsuo; Oshima, Naga; Petropavlovskikh, Irina; Peischl, Jeff; Plummer, David A.; Pozzoli, Luca; Raut, Jean-Christophe; Ryerson, Tom; Skeie, Ragnhild Bieltvedt; Solberg, Sverre; Thomas, Manu Anna; Thompson, Chelsea R.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; Salzen, Knut von; Tarasick, David

As the third most important greenhouse gas (GHG) after carbon dioxide (CO2) and methane (CH4), tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O3 near the tropopause (∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O3 precursors (CO, NOx, and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and possibly overestimating OH. Throughout the vertical profile (compared to aircraft measurements), the MMM underestimates both CO and NOx but overestimates PAN. Perhaps as a result of competing deficiencies, the MMM O3 matches the observed O3 reasonably well. Our findings suggest that despite model updates over the last decade, model results are as highly variable as ever and have not increased in accuracy for representing Arctic tropospheric O3.

2023

Prevalence of tick-borne encephalitis virus in questing Ixodes ricinus nymphs in southern Scandinavia and the possible influence of meteorological factors

Lamsal, Alaka; Edgar, Kristin Skarsfjord; Jenkins, Andrew; Renssen, Hans; Kjær, Lene Jung; Alfsnes, Kristian; Bastakoti, Srijana; Dieseth, Malene Strøm; Klitgaard, Kirstine; Lindstedt, Heidi Elisabeth Heggen; Paulsen, Katrine Mørk; Vikse, Rose; Korslund, Lars; Kjelland, Vivian; Stuen, Snorre; Kjellander, Petter; Christensson, Madeleine; Teräväinen, Malin; Jensen, Laura Mark; Regmi, Manoj; Giri, Dhiraj; Marsteen, Leif; Bødker, René; Soleng, Arnulf; Andreassen, Åshild Kristine

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.

2023

Exploring microplastic contamination in reef-associated fishes of the Tropical Atlantic

Justino, Anne K.S.; Ferreira, Guilherme V.B.; Fauvelle, Vincent; Schmidt, Natascha; Lenoble, Veronique; Pelage, Latifa; Lucena-Fredou, Flavia

2023

Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column

Pazmiño, Andrea; Goutail, Florence; Godin-Beekmann, Sophie; Hauchecorne, Alain; Pommereau, Jean-Pierre; Chipperfield, Martyn P.; Feng, Wuhu; Lefèvre, Franck; Lecouffe, Audrey; Roozendael, Michel Van; Jepsen, Nis; Hansen, Georg H.; Kivi, Rigel; Strong, Kimberly; Walker, Kaley A.

Ozone depletion over the polar regions is monitored each year by satellite- and ground-based instruments. In this study, the vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from Système d'Analyse par Observation Zénithale (SAOZ) ground-based instruments and Multi-Sensor Reanalysis (MSR2). The passive-tracer method allows us to determine the evolution of the daily rate of column ozone destruction and the magnitude of the cumulative column loss at the end of the winter. Three metrics are used in trend analyses that aim to assess the ozone recovery rate over both polar regions: (1) the maximum ozone loss at the end of the winter, (2) the onset day of ozone loss at a specific threshold, and (3) the ozone loss residuals computed from the differences between annual ozone loss and ozone loss values regressed with respect to sunlit volume of polar stratospheric clouds (VPSCs). This latter metric is based on linear and parabolic regressions for ozone loss in the Northern Hemisphere and Southern Hemisphere, respectively. In the Antarctic, metrics 1 and 3 yield trends of −2.3 % and −2.2 % per decade for the 2000–2021 period, significant at 1 and 2 standard deviations (σ), respectively. For metric 2, various thresholds were considered at the total ozone loss values of 20 %, 25 %, 30 %, 35 %, and 40 %, all of them showing a time delay as a function of year in terms of when the threshold is reached. The trends are significant at the 2σ level and vary from 3.5 to 4.2 d per decade between the various thresholds. In the Arctic, metric 1 exhibits large interannual variability, and no significant trend is detected; this result is highly influenced by the record ozone losses in 2011 and 2020. Metric 2 is not applied in the Northern Hemisphere due to the difficulty in finding a threshold value in enough of the winters. Metric 3 provides a negative trend in Arctic ozone loss residuals with respect to the sunlit VPSC fit of −2.00 ± 0.97 (1σ) % per decade, with limited significance at the 2σ level. With such a metric, a potential quantitative detection of ozone recovery in the Arctic springtime lower stratosphere can be made.

2023

Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records

Eckhardt, Sabine; Pisso, Ignacio; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Plach, Andreas; McConnell, Joseph R.; Sigl, Michael; Ruppel, Meri; Zdanowicz, Christian; Lim, Saehee; Chellman, Nathan J; Opel, Thomas; Meyer, Hanno; Steffensen, Jørgen Peder; Schwikowski, Margit; Stohl, Andreas

Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.

2023

Publication
Year
Category