Found 9983 publications. Showing page 113 of 400:
2018
2018
Model development for high-resolution emissions from residential wood combustion
In this report, we describe the MetVed model developed to estimate emissions from residential wood combustion (RWC) at high spatial-temporal resolution. The model uses a downscaling method approach, which builds on bottom-up principles and derive a wood burning potential for each grid based on the housing type, size and heating technology, energy demand and outdoor temperature of each grid. The model builds on the combination of several databases with information at high level of detail. The databases contain geo-localised information about dwelling number and type, energy consumption statistics, fireplace and stove locations, and the available technology for residential heating. The datasets are combined and the dependencies between the different variables are analysed. MetVed includes the time variation for RWC based on the heating degree concept combined with time-variation from consumer statistics, and the vertical distribution based on the RWC shared in apartment buildings versus houses. The results from the MetVed-model have shown to improve the accuracy of dispersion modelling results when compared with predictions based on previous emission inventories.
NILU
2018
Environmental contaminants are found throughout Arctic marine ecosystems, and their presence in seabirds has been
associated with toxicological responses. However, there are few studies of genotoxicity in Arctic avian wildlife. The purpose of
the present study was to quantify deoxyribonucleic acid (DNA) damage in lymphocytes of selected seabird species and to
examine whether accumulation of organohalogen contaminants (SOHCs) affects DNA damage. Blood was sampled from
common eider (Somateria mollissima), black guillemot (Cepphus grylle), black-legged kittiwake (Rissa tridactyla), glaucous gull
(Larus hyperboreus), arctic skua (Stercorarius parasiticus), and great skua (Stercorarius skua) in Kongsfjorden, Svalbard (Norway).
Contaminant concentrations found in the 6 species differed, presumably because of foraging ecology and biomagnification.
Despite large differences in contaminant concentrations, ranging from SOHCs 3.3 ng/g wet weight in the common eider to
SOHCs 895 ng/g wet weight in the great skua, there was no strong difference among the species in baseline DNA damage or
sensitivity to a genotoxic stressor (hydrogen peroxide). Baseline levels of DNA damage were low, with median values ranging
from 1.7% in the common eider to 8.6% in the great skua. There were no associations between DNA damage and contaminants
in the investigated species, suggesting that contaminant concentrations in Kongsfjorden are too low to evoke genotoxic effects,
or possibly that lymphocytes are resistant to strand breakage. Clearly, genotoxicity is a topic for future studies of Arctic seabirds
Arctic; Seabirds; Genotoxicity; Comet Assay; Persistent organic pollutants; Perfluoroalkyl substances
2018
Interdecadal change in the relationship between the East Asian winter monsoon (EAWM) and the Arctic Oscillation (AO) has been documented by many studies. This study, utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5), evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s, and further projects the evolution of the EAWM–AO relationship during the 21st century. It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models (e.g., GFDL-ESM2M, GISS-E2-H, and MPI-ESM-MR). The coupled models’ simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s. Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO. Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s, and insignificant during the 2060s, but uncertain from the 2030s to the 2050s.
2018
2018
2018
2018
2018
2018
In this study we apply two methods for data collection that are relatively new in the field of atmospheric science. The two developed methods are designed to collect essential geo-localized information to be used as input data for a high resolution emission inventory for residential wood combustion (RWC). The first method is a webcrawler that extracts openly online available real estate data in a systematic way, and thereafter structures them for analysis. The webcrawler reads online Norwegian real estate advertisements and it collects the geo-position of the dwellings. Dwellings are classified according to the type (e.g., apartment, detached house) they belong to and the heating systems they are equipped with. The second method is a model trained for image recognition and classification based on machine learning techniques. The images from the real estate advertisements are collected and processed to identify wood burning installations, which are automatically classified according to the three classes used in official statistics, i.e., open fireplaces, stoves produced before 1998 and stoves produced after 1998. The model recognizes and classifies the wood appliances with a precision of 81%, 85% and 91% for open fireplaces, old stoves and new stoves, respectively. Emission factors are heavily dependent on technology and this information is therefore essential for determining accurate emissions. The collected data are compared with existing information from the statistical register at county and national level in Norway. The comparison shows good agreement for the proportion of residential heating systems between the webcrawled data and the official statistics. The high resolution and level of detail of the extracted data show the value of open data to improve emission inventories. With the increased amount and availability of data, the techniques presented here add significant value to emission accuracy and potential applications should also be considered across all emission sectors.
2018
Seasonal and interannual variability in surface water partial pressure of CO2 (pCO2) and air‐sea CO2 fluxes from a West Spitsbergen fjord (IsA Station, Adventfjorden) are presented, and the associated driving forces are evaluated. Marine CO2 system data together with temperature, salinity, and nutrients, were collected at the IsA Station between March 2015 and June 2017. The surface waters were undersaturated in pCO2 with respect to atmospheric pCO2 all year round. The effects of biological activity (primary production/respiration) followed by thermal forcing on pCO2 were the most important drivers on a seasonal scale. The ocean was a sink for atmospheric CO2 with annual air‐sea CO2 fluxes of −36 ± 2 and −31 ± 2 g C·m−2·year−1 for 2015–2016 and 2016–2017, respectively, as estimated from the month of April. Waters of an Arctic origin dominated in 2015 and were replaced in 2016 by waters of a transformed Atlantic source. The CO2 uptake rates over the period of Arctic origin waters were significantly higher (2 mmol C·m−2·day−1) than the rates of the Atlantic origin waters of the following year.
2018
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2017.
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: in Oslo, Tromsø/Andøya and Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that the ozone layer stabilized at a level ~2% below pre-1980 level. There are large inter-annual variations and in 2017 there were relatively low values at all the three Norwegian stations during the winter. However, the ozone situation normalized towards the end of spring.
NILU
2018
2018
2018
In 2005, the European Commission funded the NORMAN project to promote a permanent network of reference laboratories and research centers, including academia, industry, standardization bodies, and NGOs. Since then, NORMAN has (i) facilitated a more rapid and wide-scope exchange of data on the occurrence and effects of contaminants of emerging concern (CECs), (ii) improved data quality and comparability via validation and harmonization of common sampling and measurement methods (chemical and biological), (iii) provided more transparent information and monitoring data on CECs, and (iv) established an independent and competent forum for the technical/scientific debate on issues related to emerging substances. NORMAN plays a significant role as an independent organization at the interface between science and policy, with the advantage of speaking to the European Commission and other public institutions with the “bigger voice” of more than 70 members from 20 countries. This article provides a summary of the first 10 years of the NORMAN network. It takes stock of the work done so far and outlines NORMAN’s vision for a Europe-wide collaboration on CECs and sustainable links from research to policy-making. It contains an overview of the state of play in prioritizing and monitoring emerging substances with reference to several innovative technologies and monitoring approaches. It provides the point of view of the NORMAN network on a burning issue—the regulation of CECs—and presents the positions of various stakeholders in the field (DG ENV, EEA, ECHA, and national agencies) who participated in the NORMAN workshop in October 2016. The main messages and conclusions from the round table discussions are briefly presented.
2018