Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9758 publications. Showing page 258 of 391:

Publication  
Year  
Category

Nye organiske miljøgifter i nordisk miljø: analyse og modellering. NILU F

Krogseth, I.S.; Breivik, K.; Shlabach, M.; McLachlan, M.; Wania, F.; Arnot, J.

2011

Nye plaststoffer kan være like ille som de gamle

Schlabach, Martin (interview subject); Spilde, Ingrid (journalist)

2018

Nye tall: Metan-utslippene etter Nord Stream var tidenes største

Platt, Stephen Matthew (interview subject); Elster, Kristian (journalist)

2025

Nye www.luftkvalitet.info. NILU F

Endregard, G.

2003

Nytt regionalt renseanlegg i Nordbykollen - Drammen. Forprosjekt spredningsberegninger utslipp til luft

Berglen, Tore Flatlandsmo; Markelj, Miha; Weydahl, Torleif

NILU har på oppdrag fra Multiconsult AS gjort spredningsberegninger av utslipp til luft fra fremtidig renseanlegg i Nordbykollen i Drammen, samt pumpestasjon ved Solumstrand. Det er gjort beregninger for tre utslippspunkter ved Nordbykollen, 15 moh., 45 moh. og 85 moh. og det er beregnet grad av fortynning ved ulike naboer. Vurderingen er at ved normale driftsforhold vil plasseringen 15 moh. være tilstrekkelig for å minimere risiko for lukt. Men ved spesielle værforhold som inversjon kan det oppstå situasjoner med stabil luft og dårlig fortynning med økt risiko for følbar lukt hos nærmeste naboer. For pumpestasjonen ved Solumstrand bør det velges en løsning med minimum 10-12 m skorstein og vertikal utgangshastighet 5-6 m/s for å sikre god spredning og fortynning av utslippet.

NILU

2024

2019

Nytt, stort hull i ozonlaget

Hansen, Georg H. (interview subject); Tønset, Arne Egil (journalist)

2020

Nå snur drømmeværet – derfor er det gode nyheter

Tønnesen, Dag (interview subject); Eid, Anders (journalist)

2019

OASIS: Ocean Atmosphere Sea-Ice-Snowpack Interactions in Polar Regions.

Bottenheim, J.W.; Abbatt, J.; Beine, H.; Berg, T.; Bigg, K.; Domine, F.; Leck, C.; Lindberg, S.; Matrai, P.; MacDonald, R.; McConnell, J.; Platt, U.; Raspopov, O.; Shepson, P.; Shumilov, O.; Stutz, J.; Wolff, E.

2004

Observation and characterization of aerosols above ALOMAR (69°N) by tropospheric Lidar, sun-photometer and VHF Radar.

Frioud, M.; Gausa, M.; Stebel, K.; Hansen, G.; Myhre, C.; Singer, W., Latteck, Angel de Frutos, R.; Cachorro, V.; Toledano, C.,, Rodriguez, E.

2006

Observation of 27 day solar cycles in the production and mesospheric descent of EPP-produced NO.

Hendrickx, K.; Megner, L.; Gumbel, J.; Siskind, D.E.; Orsolini, Y.J.; Nesse Tyssøy, H.; Hervig, M.

2015

Observation of 27-day solar cycles in the production and mesospheric descent of EPP-produced NO.

Hendrickx, K.; Megner, L.; Gumbel, J.; Siskind, D.E.; Orsolini, Y.J.; Nesse Tyssøy, H.; Hervig, M.

2015

Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras

Dinger, Anna Solvejg; Stebel, Kerstin; Cassiani, Massimo; Ardeshiri, Hamidreza; Bernardo, Cirilo; Kylling, Arve; Park, Soon-Young; Pisso, Ignacio; Schmidbauer, Norbert; Wasseng, Jan Henrik; Stohl, Andreas

In atmospheric tracer experiments, a substance is released into the turbulent atmospheric flow to study the dispersion parameters of the atmosphere. That can be done by observing the substance's concentration distribution downwind of the source. Past experiments have suffered from the fact that observations were only made at a few discrete locations and/or at low time resolution. The Comtessa project (Camera Observation and Modelling of 4-D Tracer Dispersion in the Atmosphere) is the first attempt at using ultraviolet (UV) camera observations to sample the three-dimensional (3-D) concentration distribution in the atmospheric boundary layer at high spatial and temporal resolution. For this, during a three-week campaign in Norway in July 2017, sulfur dioxide (SO2), a nearly passive tracer, was artificially released in continuous plumes and nearly instantaneous puffs from a 9m high tower. Column-integrated SO2 concentrations were observed with six UV SO2 cameras with sampling rates of several hertz and a spatial resolution of a few centimetres. The atmospheric flow was characterised by eddy covariance measurements of heat and momentum fluxes at the release mast and two additional towers. By measuring simultaneously with six UV cameras positioned in a half circle around the release point, we could collect a data set of spatially and temporally resolved tracer column densities from six different directions, allowing a tomographic reconstruction of the 3-D concentration field. However, due to unfavourable cloudy conditions on all measurement days and their restrictive effect on the SO2 camera technique, the presented data set is limited to case studies. In this paper, we present a feasibility study demonstrating that the turbulent dispersion parameters can be retrieved from images of artificially released puffs, although the presented data set does not allow for an in-depth analysis of the obtained parameters. The 3-D trajectories of the centre of mass of the puffs were reconstructed enabling both a direct determination of the centre of mass meandering and a scaling of the image pixel dimension to the position of the puff. The latter made it possible to retrieve the temporal evolution of the puff spread projected to the image plane. The puff spread is a direct measure of the relative dispersion process. Combining meandering and relative dispersion, the absolute dispersion could be retrieved. The turbulent dispersion in the vertical is then used to estimate the effective source size, source timescale and the Lagrangian integral time. In principle, the Richardson–Obukhov constant of relative dispersion in the inertial subrange could be also obtained, but the observation time was not sufficiently long in comparison to the source timescale to allow an observation of this dispersion range. While the feasibility of the methodology to measure turbulent dispersion could be demonstrated, a larger data set with a larger number of cloud-free puff releases and longer observation times of each puff will be recorded in future studies to give a solid estimate for the turbulent dispersion under a variety of stability conditions.

2018

Observational evidence and capabilities related to hemispheric or intercontinental transport. Air pollution studies, 16

Parrish, D.; Edwards, D.; Jaffe, D.; Martin, R.; Prospero, J.; Remer, L.; Evans, M.; Hatakeyama, S.; Jennings, G.; Penkett, S.; Scheffe, R.; Tørseth, K.

2008

Observations and capabilities. Air pollution studies, 19

Hung, H.; Bidleman, T.; Breivik, K.; Halsall,C.; Harner, T.; Holoubek,I.; Jantunen, L.; Kallenborn, R.; Lammel, G.; Li, Y.-F.; Ma, J.; Meyer, T.; Simonich, S.; Su, Y.; Sweetman, A.; Weiss, P.

2011

Observations and retrievals of volcanic ash clouds using ground- and satallite-based sensors

Mereu, Luigi; Scollo, Simona; Bonadonna, Costanza; Corradini, Stefano; Donnadieu, Franck; Montopoli, Mario; Vulpiani, Gianfranco; Barsotti, Sara; Freret-Lorgeril, Valentin; Gudmundsson, Magnús Tumi; Kylling, Arve; Ripepe, Maurizio

2023

Publication
Year
Category