Found 9887 publications. Showing page 328 of 396:
Copernicus Atmosphere Monitoring Service
2021
An update on low-cost sensors for the measurement of atmospheric composition
The report reflects on the state of the art in terms of accuracy, reliability and reproducibility of different sensors used for the measurements of reactive and greenhouse gases, and aerosols, along with the key analytical principles and what has been learned so far about low-cost sensors from both laboratory studies and real-world tests (up to August 2020). In some cases, scientific literature that had been accepted, but not yet published in a final form, was included in this review. Some national and international government documents were also included in this synthesis. The report includes eight distinct sections, including an Introduction to the Report, Main Principles and Components, Evaluation Activities, Sensor Performance, Communicating LCS to Society, and Expert Consensus and Advice. Communicating LCS to Society is a new section to the original 2018 report and includes a consensus viewpoint on strategies for communicating LCS data and technologies more broadly to the lay public. This report also includes a set of specific expert consensus recommendations for LCS users across different user groups.
WMO
2021
The increase of the commercial availability of low-cost sensor technology to monitor atmospheric composition is contributing to the rapid adoption of such technology by both public authorities and self-organized initiatives (e.g. grass root movements, citizen science, etc.). Low-cost sensors (LCS) can provide real time measurements, in principle at lower cost than traditional monitoring reference stations, allowing higher spatial coverage than the current reference methods. However, data quality from LCS is lower than the one provided by reference methods. Also, the total cost of deploying a dense sensor network needs to consider the costs associated not only to the sensor platforms but also the costs associated for instance with deployment, maintenance and data transmission.
This report aims to give an overview of the current status of LCS technology in relation to commercialization, measuring capabilities and data quality, with especial emphasis on the challenges associated to the use of this novel technology, and the opportunities they open when correctly used.
NILU
2021
2021
The increased availability of commercially-available low-cost air quality sensors combined with increased interest in their use by citizen scientists, community groups, and professionals is resulting in rapid adoption, despite data quality concerns. We have characterized three out-the-box PM sensor systems under different environmental conditions, using field colocation against reference equipment. The sensor systems integrate Plantower 5003, Sensirion SPS30 and Alphasense OCP-N3 PM sensors. The first two use photometry as a measuring technique, while the third one is an optical particle counter. For the performance evaluation, we co-located 3 units of each manufacturer and compared the results against optical (FIDAS) and gravimetric (KFG) methods for a period of 7 weeks (28 August to 19 October 2020). During the period from 2nd and 5th October, unusually high PM concentrations were observed due to a long-range transport episode. The results show that the highest correlations between the sensor systems and the optical reference are observed for PM1, with coefficients of determination above 0.9, followed by PM2.5. All the sensor units struggle to correctly measure PM10, and the coefficients of determination vary between 0.45 and 0.64. This behavior is also corroborated when using the gravimetric method, where correlations are significantly higher for PM2.5 than for PM10, especially for the sensor systems based on photometry. During the long range transport event the performance of the photometric sensors was heavily affected, and PM10 was largely underestimated. The sensor systems evaluated in this study had good agreement with the reference instrumentation for PM1 and PM2.5; however, they struggled to correctly measure PM10. The sensors also showed a decrease in accuracy when the ambient size distribution was different from the one for which the manufacturer had calibrated the sensor, and during weather conditions with high relative humidity. When interpreting and communicating air quality data measured using low-cost sensor systems, it is important to consider such limitations in order not to risk misinterpretation of the resulting data.
MDPI
2021
Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
Wiley-VCH
2021
American Meteorological Society (AMS)
2021
2021
2021
Oceanic long-range transport of organic additives present in plastic products: an overview
Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8100–18,900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention.
Springer
2021
This report analyses evolution and trends of air quality in Europe, based on a 15-year time series of spatial data fusion maps for the years 2005-2019. The analysis has been performed for PM10 annual average, the ozone indicator SOMO35 and NO2 annual average. For the purpose of the Eionet Report - ETC/ATNI 2021/11 trend analysis, a consistent reconstruction of the full 15-year time series of air quality maps has been performed, based on a consistent mapping methodology and input data. For the reconstruction, the Regression – Interpolation – Merging Mapping (RIMM) methodology as routinely used in the regular European-wide annual mapping has been applied.
The trend analysis has been performed based on time series of the aggregated data for individual countries, for large European regions and for the entire mapping area, both for spatial and population-weighted aggregations. In addition, maps of trends have been constructed based on the trend estimates for all grid cells of a map.
For the European-wide aggregations across the whole mapping area, statistically significant downward trend have been estimated for PM10 and NO2, while no significant trend was detected in the case of ozone.
ETC/ATNI
2021
2021
Luftkvalitet i Ny-Ålesund. Målinger av lokal luftkvalitet 2019 og 2020.
De målte konsentrasjonene var generelt lave for alle komponenter og under nasjonale grenseverdier for beskyttelse av menneskets helse og økosystemet. Vind fra nordlige sektorer ga de høyeste gjennomsnittskonsentrasjonene av nitrogenoksider og svoveldioksid, noe som peker på kraftstasjonen og havnen som mulige kilder. Vi ser også enkelte episoder med langtransport av svoveldioksid.
NILU
2021
Atmospheric corrosion due to amine emissions from carbon capture plants
The atmospheric corrosion due to pure amines emitted from carbon capture plants was investigated. Amine exposure was found to initially inhibit the corrosion of steel, by its film formation and alkalinity, but reduce corrosion product layers and lead to freezing point depression, which could in turn increase the corrosion. Very high amine doses were observed to dissolve the metal without the establishing of a corrosion layer. These effects seem much more pronounced on copper than on steel. Climate and air quality variations affect the steel corrosion much more than the expected maximum amine deposition from carbon capture plant emissions.
Elsevier
2021
Safety assessment of titanium dioxide (E171) as a food additive
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
2021
2021
The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation
The stratospheric, tropospheric and surface impacts from the 11 year ultraviolet solar spectral irradiance (SSI) variability have been extensively studied using climate models and observations. Here, we demonstrate using idealized model simulations that the Pacific Decadal Oscillation (PDO), which has been shown to impact the tropospheric and stratospheric circulation from sub-decadal to multi-decadal timescales, strongly modulates the solar-induced atmospheric response. To this end, we use a high-top version of the coupled ocean–atmosphere Norwegian Climate Prediction Model forced by the SSI dataset recommended for Coupled Model Intercomparison Project 6. We perform a 24-member ensemble experiment over the solar cycle 23 in an idealized framework. To assess the PDO modulation of the solar signal, we divide the model data into the two PDO phases, PDO+ and PDO−, for each solar (maximum or minimum) phase. By compositing and combining the four categories, we hence determine the component of the solar signal that is independent of the PDO and the modulation of the solar signal by the PDO, along with the solar signal in each PDO phase. Reciprocally, we determine the PDO effect in each solar phase. Our results show that the intensification of the polar vortex under solar maximum is much stronger in the PDO− phase. This signal is transferred into the troposphere, where we find a correspondingly stronger polar jet and weaker Aleutian Low. We further show that the amplification of the solar signal by the PDO− phase is driven by anomalous meridional advection of solar-induced temperature anomalies over northern North America and the North Pacific, which contributes to a decreased meridional eddy heat flux and hence to a decreased vertical planetary wave flux into the stratosphere.
2021