Found 9985 publications. Showing page 71 of 400:
2009
2005
While occupational inhalation exposure to gaseous elemental mercury (GEM) has decreased in many workplaces as mercury is being removed from most products and processes, it continues to be a concern for those engaged in artisanal and small-scale gold mining or in recycling mercury-containing products. Recently, stationary and personal passive air samplers based on activated carbon sorbents and radial diffusive barriers have been shown to be suitable for measuring GEM concentrations across the range relevant for chronic health effects. Here, we used a combination of stationary and personal passive samplers to characterize the inhalation exposure to GEM of individuals living and working in two Ghanaian gold mining communities and working at a Norwegian e-waste recycling facility. Exposure concentrations ranging from <7 ng m−3 to >500 μg m−3 were observed, with the higher end of the range occurring in one gold mining community. Large differences in the GEM exposure averaged over the length of a workday between individuals can be rationalized by their activity and proximity to mercury sources. In each of the three settings, the measured exposure of the highest exposed individuals exceeded the highest concentration recorded with a stationary sampler, presumably because those individuals were engaged in an activity that generated or involved GEM vapors. High day-to-day variability in exposure for those who participated on more than one day, suggests the need for sampling over multiple days for reliable exposure characterization. Overall, a combination of personal and stationary passive sampling is a cost-effective approach that cannot only provide information on exposure levels relative to regulatory thresholds, but also can identify emission hotspots and therefore guide mitigation measures.
2021
2008
Extreme precipitation events in Norway in all seasons are often linked to atmospheric rivers (AR). We show that during the period 1979–2018 78.5% of the daily extreme precipitation events in Southwestern Norway are linked to ARs, this percentage decreasing to 59% in the more northern coastal regions and ~40% in the inland regions. The association of extreme precipitation with AR occurs most often in fall for the coastal areas and in summer inland. All Norwegian regions experience stronger winds and 1–2°C increase of the temperature at 850 hPa during AR events compared to the climatology, the extreme precipitation largely contributing to the wet climatology (only considering rainy days) in Norway but also in Denmark and Sweden when the rest of Europe is dry. A cyclone is found nearby the AR landfall point in 70% of the cases. When the cyclone is located over the British Isles, as it is typically the case when ARs reach Southeastern Norway, it is associated with cyclonic Rossby wave breaking whereas when the ARs reach more northern regions, anticyclonic wave breaking occurs over Northern Europe. Cyclone-centered composites show that the mean sea level pressure is not significantly different between the eight Norwegian regions, that baroclinic interaction can still take place although the cyclone is close to its decay phase and that the maximum precipitation occurs ahead of the AR. Lagrangian air parcel tracking shows that moisture uptake mainly occurs over the North Atlantic for the coastal regions with an additional source over Europe for the more eastern and inland regions.
2021
Characterization of urban air quality indoor/outdoor particulate matter chemical characteristics and source-to-inhaled dose relationships - URBAN-AEROSOL. Final report. ESD Report - URBAN-AEROSOL
2004
2012
2017
2015
2007
Characterizing volcanic emissions using ground-based infrared and ultra-violet camera systems. NILU F
2013
2020
2012
2002
2005
2005
2003
2006
2009
2012
2003