Found 9985 publications. Showing page 84 of 400:
2020
2020
The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between ‘desirable’ and ‘essential’ information: ‘essential’ information refers to the precise details that are necessary to assess the quality of the experimental work, whereas ‘desirable’ information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.
2020
Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very short lived substances (Cl‐VSLS) with anthropogenic sources. Recent studies highlight the increasing influence of such compounds, particularly CH2Cl2, on the stratospheric chlorine budget and therefore on ozone depletion. Here, a multiyear global‐scale synthesis inversion was performed to optimize CH2Cl2 (2006–2017) and C2Cl4 (2007–2017) emissions. The approach combines long‐term surface observations from global monitoring networks, output from a three‐dimensional chemical transport model (TOMCAT), and novel bottom‐up information on prior industry emissions. Our posterior results show an increase in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with Asian emissions accounting for 68% and 89% of these totals, respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 51 Gg yr−1 over the study period, while European and North American emissions declined, indicating a continental‐scale shift in emission distribution since the mid‐2000s. For C2Cl4, we estimate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time‐varying posterior emissions offer significant improvements over the prior. Utilizing the posterior emissions leads to modeled tropospheric CH2Cl2 and C2Cl4 abundances and trends in good agreement to those observed (including independent observations to the inversion). A shorter C2Cl4 lifetime, from including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor of ~1.5, which in some places improves model‐measurement agreement. The sensitivity of our findings to assumptions in the inversion procedure, including CH2Cl2 oceanic emissions, is discussed.
2020
2020
2020
Epigenetics in breast cancer therapy—New strategies and future nanomedicine perspectives
Epigenetic dysregulation has been recognized as a critical factor contributing to the development of resistance against standard chemotherapy and to breast cancer progression via epithelial-to-mesenchymal transition. Although the efficacy of the first-generation epigenetic drugs (epi-drugs) in solid tumor management has been disappointing, there is an increasing body of evidence showing that epigenome modulation, in synergy with other therapeutic approaches, could play an important role in cancer treatment, reversing acquired therapy resistance. However, the epigenetic therapy of solid malignancies is not straightforward. The emergence of nanotechnologies applied to medicine has brought new opportunities to advance the targeted delivery of epi-drugs while improving their stability and solubility, and minimizing off-target effects. Furthermore, the omics technologies, as powerful molecular epidemiology screening tools, enable new diagnostic and prognostic epigenetic biomarker identification, allowing for patient stratification and tailored management. In combination with new-generation epi-drugs, nanomedicine can help to overcome low therapeutic efficacy in treatment-resistant tumors. This review provides an overview of ongoing clinical trials focusing on combination therapies employing epi-drugs for breast cancer treatment and summarizes the latest nano-based targeted delivery approaches for epi-drugs. Moreover, it highlights the current limitations and obstacles associated with applying these experimental strategies in the clinics.
2020
MetVed v.2.0. Improvement and update of the MetVed emission model for residential wood combustion
This report presents the update of the MetVed-model (Grythe et al., 2019). Among the updates are new emission factors and several new species that include climate gases (CO2, CH4 and N2O). There is now a new parameter that describes the emission altitude and a new and improved time variation. Activity data has been updated to the most recent year (2019), which also has required updates to the model and model input variables. The largest update has been the holiday cabin emission module, which is an entirely new addition. Emissions from cabins differ in several ways from residential emissions. The most notable difference is that cabins are spread over more rural areas and are more dispersed than the residential dwellings. The model differentiates alpine and coastal cabins, which is an important distinction as a high density of cabins exists along the coast and they are mainly used during summer.
NILU
2020
2020
Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a Sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7.2×3.5 km2 (5.6×3.5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development of the TROPOMI UV algorithm and the processing of the TROPOMI surface ultraviolet (UV) radiation product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and Antarctic areas were used for validation of the TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate/UV index, and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60 %–80 % of TROPOMI data was within ±20 % of ground-based data for snow-free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow-free surface daily doses were within ±10 % and ±5 % at two-thirds and at half of the sites, respectively. At several sites more than 90 % of cloud-free TROPOMI data was within ±20 % of ground-based measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values (i.e. satellite data < ground-based measurement), but at high latitudes where non-homogeneous topography and albedo or snow conditions occurred, the negative bias was exceptionally high: from −30 % to −65 %. Positive biases of 10 %–15 % were also found for mountainous sites due to challenging topography. The TROPOMI surface UV radiation product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain, which can be used to filter the data retrieved under challenging conditions.
2020
Measurements of solar ultraviolet radiation (UVR) performed between January and June 2020 at 10 Arctic and subarctic locations are compared with historical observations. Differences between 2020 and prior years are also assessed with total ozone column and UVR data from satellites. Erythemal (sunburning) UVR is quantified with the UV Index (UVI) derived from these measurements. UVI data show unprecedently large anomalies, occurring mostly between early March and mid‐April 2020. For several days, UVIs observed in 2020 exceeded measurements of previous years by up to 140%. Historical means were surpassed by more than six standard deviations at several locations in the Arctic. In northern Canada, the average UVI for March was about 75% larger than usual. UVIs in April 2020 were elevated on average by about 25% at all sites. However, absolute anomalies remained below 3.0 UVI units because the enhancements occurred during times when the solar elevation was still low.
2020
Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)–high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ∼7 000 PFAS fragmentation patterns based on rules derived from standards and literature, and the software automates a process for users to add additional compounds. The use of intelligent data-acquisition methods (iterative exclusion) nearly doubled the number of annotations. The software application is demonstrated by characterizing PFAS in landfill leachate as well as in leachate foam generated to concentrate the compounds for remediation purposes. FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments. By improving the throughput and coverage of PFAS annotation, FluoroMatch will accelerate the discovery of PFAS posing significant human risk.
2020
2020
Biomass burning related aerosol episodes are becoming a serious threat to the radiative balance of the Arctic region. Since early July 2017 intense wildfires were recorded between August and September in Canada and Greenland, covering an area up to 4674 km2 in size. This paper describes the impact of these biomass burning (BB) events measured over Svalbard, using an ensemble of ground-based, columnar, and vertically-resolved techniques. BB influenced the aerosol chemistry via nitrates and oxalates, which exhibited an increase in their concentrations in all of size fractions, indicating the BB origin of particles. The absorption coefficient data (530 nm) at ground reached values up to 0.6 Mm–1, highlighting the impact of these BB events when compared to average Arctic background values, which do not exceed 0.05 Mm–1. The absorption behavior is fundamental as implies a subsequent atmospheric heating. At the same time, the AERONET Aerosol Optical Depth (AOD) data showed high values at stations located close to or in Canada (AOD over 2.0). Similarly, increased values of AODs were then observed in Svalbard, e.g., in Hornsund (daily average AODs exceeded 0.14 and reached hourly values up to 0.5). Elevated values of AODs were then registered in Sodankylä and Andenes (daily average AODs exceeding 0.150) a few days after the Svalbard observation of the event highlighting the BB columnar magnitude, which is crucial for the radiative impact. All the reported data suggest to rank the summer 2017 plume of aerosols as one of the biggest atmosphere related environmental problems over Svalbard region in last 10 years
2020
2020
Estimation of damage cost to building facades per kilo emission of air pollution in Norway
This work reports marginal damage costs to façades due to air pollution exposure estimated “bottom up,” for Norway and Oslo (Norway) by the use of exposure response functions (ERFs) and impact pathway analysis from the emission to the deteriorating impact. The aim of the work was to supply cost estimates that could be compared with reported damage costs to health, agriculture, and ecosystems, and that could be used in cost-benefit analysis by environmental authorities. The marginal damage costs for cleaning, repair, and in total (cleaning + repair) were found to be, in Norway: eight, two, and 10, respectively, and for a traffic situation in Oslo: 50 (77), 50 (28), and 100 (105), (×/÷ 2.5) Euro/kg emission of PM10, SO2, and NO2 in total. For Oslo, the values represent a recorded façade materials inventory for 17–18th century buildings, and in the brackets the same façade inventory as for Norway. In total, 5–10% of the marginal damage cost was found to be due to NO2. The total marginal cost was found to be shared about equally between the impact of PM10 and SO2 in Norway (50 and 42% of the impact) and for the 17–18th century buildings in Oslo (45% and 49% of the impact), but for a similar façade materials inventory in Oslo as Norway, the total marginal cost due to PM10 was about two-thirds and that due to SO2 about one-third of the total, with about 5% of the cost still being due to NO2. The division of the costs between the separate pollutant influences on the cleaning and repair was, however, found to be significantly different in Norway and Oslo. In Norway, about 60% of the marginal cleaning cost was found to be due to PM10, 30% due to SO2, and 10% due to NO2. In Oslo, about 85% of the marginal cleaning costs were found to be due to PM10, 10% due to SO2, and 5% due to NO2. For the marginal repair cost, the opposite situation was found, in both Norway and Oslo, with 80–90% of the cost being due to SO2, 5–10% being due to PM10, and 5–10% due to NO2. As other factors than air pollution deteriorates façades and influences maintenance decisions, the expenses that can be attributed to the air pollution could be significantly lower.
2020