Found 9746 publications. Showing page 17 of 390:
2024
2024
2024
2024
The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) officially became the 33rd European Research Infrastructure Consortium (ERIC) on April 25, 2023 with the support of 17 founding member and observer countries. As a pan-European legal organization, ACTRIS ERIC will coordinate the provision of data and data products on short-lived atmospheric constituents and clouds relevant to climate and air pollution over the next 15-20 years. ACTRIS was designed more than a decade ago, and its development was funded at national and European levels. It was included in the European Strategy Forum on Research Infrastructures (ESFRI) Roadmap in 2016 and subsequently, in the national infrastructure roadmaps of European countries. It became a landmark of the ESFRI roadmap in 2021. The purpose of this paper is to describe the mission of ACTRIS, its added value to the community of atmospheric scientists, providing services to academia as well as the public and private sectors, and to summarize its main achievements. The present publication serves as a reference document for ACTRIS, its users and the scientific community as a whole. It provides the reader with relevant information and an overview on ACTRIS governance and services, as well as a summary of the main scientific achievements of the last 20 years. The paper concludes with an outlook on the upcoming challenges for ACTRIS and the strategy for its future evolution.
American Meteorological Society
2024
Testing ethical impact assessment for nano risk governance
Risk governance of nanomaterials and nanotechnologies has been traditionally mainly limited to risk assessment, risk management and life cycle assessment. Recent approaches have experimented with widening the scope and including economic, social, and ethical aspects. This paper reports on tests and stakeholder feedback on fine-tuning the use of ethical impact assessment guidelines (RiskGONE D3.6) and online tools adapting the CEN Workshop Agreement part 2 CWA 17145-2:2017 (E)) to support risk governance of nanomaterials, in the RiskGONE project. The EIA guidelines and tools are intended to be used as one module in a multicriteria decision support framework for risk governance of nanomaterials, but may also be used for a stand-alone ethical impact assessment.
Nanomaterials are new forms of materials with structures at sizes between 1 and 100 nanometres (a millionth of a millimetre). They can be particles, tubes, platelets or other shaped structures. Nanomaterials can be applied in many different products, ranging from medicine to solar panels. Researchers, governments and stakeholders have been concerned with potential risks for human health and the environment for decades. Also, how nanomaterials behave during the production, use and waste processing of the products they are included in has been investigated in Life Cycle Analysis. However, ethical issues which may be raised by the use of nanomaterials in those products are usually not investigated. In this article, the procedure for an ethical impact assessment described in the CEN Workshop Agreement CWA 17145-@:2017 (E) is adapted to nanomaterials. Users who want to perform this assessment are guided through the procedure by online tools. The guidelines and tools were tested on several case studies and discussed with stakeholders, who commented on the criteria which should be used and on who could use the tools. This results in recommendations for improving the guidelines and online tools.
2024
Background
Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.
Results
As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.
Conclusions
This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools.
Springer
2024
2024
2024
2024
2024
Environmental dose-response functions of silk and paper exposed in museums.
This paper reports 1 year of data of the environments and changes in the molecular weight of silk and the degree of polymerization of sensitive paper measured externally and indoors in 10 European museums, and the dose-response functions that were obtained by statistical analysis of this data. The measurements were performed in the EU FP5 project Master (EVK-CT-2002-00093). The work provides documentation of deterioration of silk by NO2 and O3, and alternatively in combination with UV radiation. The indoor deterioration of the silk was only observed in one location with high UV radiation. The indoor deterioration of sensitive paper correlated with the UV radiation, the concentrations of NO2 and O3, and in addition with an SO2 concentration of 4 µgm−3 and a formic acid concentration of 50 µgm−3 in two different locations. If the observed dose-response effects are linear to lower doses and longer exposure times, then the lifetime to intolerable deterioration of the paper and silk would be 6–7 times longer overall in the enclosures than in the galleries.
2024
Marine litter and non-degradable plastic pollution is of global concern. Regular monitoring programs are being established to assess and understand the scale of this pollution. In Europe, the goal of the European Marine Strategy Framework Directive (MSFD) is to assess trends in Good Environmental Status and support large-scale actions at the regional level. Marine litter monitoring requires tailored sampling strategies, protocols and indicators, that align with specific objectives and are tailored for local or regional needs. In addition, the uneven spatial and temporal distributions of marine litter present a challenge when designing a statistically powerful monitoring program. In this paper, we critically review the existing marine litter monitoring programs in Europe. We discuss the main constraints, including environmental, logistical, scientific, and ethical factors. Additionally, we outline the critical gaps and shortcomings in monitoring MSFD beaches/shorelines, floating litter, seafloor litter, microplastics, and harm. Several priorities must be established to shape the future of monitoring within the MSFD. Recent developments in analytical approaches, including optimizing protocols and sampling strategies, gaining a better understanding of the spatiotemporal heterogeneity of litter and its implications for survey design and replication, and the inclusion of newly validated methodologies that have achieved sufficient technical readiness, must be considered. Although there are well-established methods for assessing beaches, floating and seafloor litter, it will be necessary to implement monitoring schemes for microplastics in sediments and invertebrates as robust analytical methods become available for targeting smaller particle size classes. Furthermore, the inclusion of indicators for entanglement and injury to marine organisms will have to be considered in the near future. Moreover, the following actions will enhance the effectiveness of monitoring efforts: (1) creating an inventory of accumulation areas and sources of specific types of litter (e.g., fishing gear), (2) monitoring riverine inputs of litter, (3) monitoring atmospheric inputs including microplastics, (4) accidental inputs during extreme weather events, and (5) studying how species at risk may be transported by litter. We provide recommendations to support long-term, effective, and well-coordinated marine litter monitoring within the MSFD to achieve a comprehensive and accurate understanding of marine litter in EU waters. This will allow the development of measures to mitigate the impacts of marine pollution and eventually to evaluate the success of the respective measures.
Elsevier
2024
2024
2024
Monitoring of long-range transported air pollutants in Norway. Annual report 2023.
This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2023, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. The level of pollution in 2023 was generally low though a few episodes occurred. There was an increase in the PM levels in southern Norway during June, caused by a mixture of sources, including emissions from wildfires in Canada
NILU
2024
Surface-Bioengineered Extracellular Vesicles Seeking Molecular Biotargets in Lung Cancer Cells
Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5β1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.
American Chemical Society (ACS)
2024