Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9757 publications. Showing page 339 of 391:

Publication  
Year  
Category

Environmental contaminants in freshwater food webs, 2021

Jartun, Morten; Økelsrud, Asle; Bæk, Kine; Ruus, Anders; Rundberget, Thomas; Vogelsang, Christian; Jenssen, Marthe Torunn Solhaug; Lund, Espen; Grung, Merete; Øxnevad, Sigurd; Enge, Ellen Katrin; Schlabach, Martin; Hanssen, Linda; Johansen, Ingar

This report presents monitoring data from freshwater food webs and abiotic samples from Lake Mjøsa and Femunden within the
Milfersk programme. Studies and monitoring of legacy and emerging contaminants have been carried out through this programme
for several years, focusing on the pelagic food web. This is the first report in the monitoring program focusing on a benthic food
chain (Chironomids, ruffe, roach and perch) in addition to inputs to Lake Mjøsa by analysis of lake sediments, surface waters,
stormwater, effluent and sludge from a wastewater treatment plant (WWTP). The analytical programme includes the determination
of a total of ̴ 260 single components.

Norsk institutt for vannforskning

2022

Copernicus Atmosphere Monitoring Service. Interim Annual Assessment Report for 2021. European air quality in 2021

Tarrasón, Leonor; Hamer, Paul David; Fjæraa, Ann Mari; Meleux, Frédérik; Colette, Augustin; Ung, Anthony; Kuenen, Jeroen; Droste, Arjan; Guevara, Marc

Copernicus Atmosphere Monitoring Service

2022

Prøvetaking av PM10 i omgivelsene til Brevik bru. 22. sept – 5. okt 2021.

Hak, Claudia; Uggerud, Hilde Thelle; Andresen, Erik; Teigland, Even Kristian; Mortensen, Tore

NILU – Norsk institutt for luftforskning har, på oppdrag fra Statens vegvesen – Drift og vedlikehold sør, utført prøvetaking av PM10 i luft i omgivelsene til Brevik bru mellom Brevik og Stathelle. Målingene ble utført med filterprøvetakere ved 2 steder nedvinds for brua i forhold til lokale hovedvindretninger. Prøvene ble tatt hver dag i perioden 22. september – 5. oktober 2021 for å utrede i hvilken grad prosjekt Brevik bru påfører lokalt miljø støvforurensning som kan medføre helseplager. 18 av de 28 prøvene tatt ble analysert med hensyn på metaller. Det ble ikke funnet sammenheng mellom konsentrasjonsforskjell mellom de to målestedene og vindretning mot et av stedene for de målte komponent

NILU

2022

The HERMOSA initiative: Harmonising Environmental Research and Monitoring of Priority Pollutants in the Svalbard Atmosphere

Koziol, Krystyna; Kallenborn, Roland; Nawrot, Adam; NIkulina, Anna; Cappelletti, David; Larose, Catherine; Nikiforov, Vladimir; Zawierucha, Krzysztof; Luks, Bartek; Moroni, Beatrice

2022

Ecological unequal exchange: quantifying emissions of toxic chemicals embodied in the global trade of chemicals, products, and waste

Tong, Kate; Li, Li; Breivik, Knut; Wania, Frank

Ecologically unequal exchange arises if more developed economies ('core') shift the environmental burden of their consumption and capital accumulation to less developed economies ('periphery'/'semi-core'). Here we demonstrate that human populations in core regions can benefit from the use of products containing toxic chemicals while transferring to the periphery the risk of human and ecological exposure to emissions associated with manufacturing and waste disposal. We use a global scale substance flow analysis approach to quantify the emissions of polybrominated diphenyl ethers (PBDEs), a group of flame retardants added to consumer products, that are embodied in the trade of chemicals, products and wastes between seven world regions over the 2000–2020 time period. We find that core regions have off-loaded PBDE emissions, mostly associated with the disposal of electrical and electronic waste (e-waste), to semi-core and peripheral regions in mainland China and the Global South. In core regions this results in small emissions that mostly occur during the product use phase, whereas in peripheral regions emissions are much higher and dominated by end of life disposal. The transfer of toxic chemical emissions between core and periphery can be quantified and should be accounted for when appraising the costs and benefits of global trade relationships.

2022

Merverdi av samarbeidet i flaggskipet Miljøgifter: How to COPE?

Sunde Krogseth, Ingjerd; Blévin, Pierre; Borch, Trude Kristin; Breivik, Knut; Bustnes, Jan Ove; Chastel, Olivier; Eckhardt, Sabine; Eulaers, Igor; Evenset, Anita; Gabrielsen, Geir Wing; Griffith, Gary; Herzke, Dorte; Pethybridge, Heidi R.; Routti, Heli Anna Irmeli; Sagerup, Kjetil; Skogeng, Lovise Pedersen; Solbakken, Christine Forsetlund; Verrault, Jonathan; Wania, Frank

2022

Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments

Jakobczyk, Pawel; Skowierzak, Grzegorz; Kaczmarzyk, Iwona; Nadolska, Malgorzata; Wcislo, Anna; Lota, Katarzyna; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel; Lota, Gregorz; Ryl, Jacek

Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology.

A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h−1, with the second-best result of 0.59 h−1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others.

The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.

Pergamon Press

2022

The Emissions Fractions Approach to Assessing the Long-Range Transport Potential of Organic Chemicals

Breivik, Knut; McLachlan, Michael S.; Wania, Frank

The assessment of long-range transport potential (LRTP) is enshrined in several frameworks for chemical regulation such as the Stockholm Convention. Screening for LRTP is commonly done with the OECD Pov and LRTP Screening Tool employing two metrics, characteristic travel distance (CTD) and transfer efficiency (TE). Here we introduce a set of three alternative metrics and implement them in the Tool’s model. Each metric is expressed as a fraction of the emissions in a source region. The three metrics quantify the extent to which the chemical (i) reaches a remote region (dispersion, ϕ1), (ii) is transferred to surface media in the remote region (transfer, ϕ2), and (iii) accumulates in these surface media (accumulation, ϕ3). In contrast to CTD and TE, the emissions fractions metrics can integrate transport via water and air, enabling comprehensive LRTP assessment. Furthermore, since there is a coherent relationship between the three metrics, the new approach provides quantitative mechanistic insight into different phenomena determining LRTP. Finally, the accumulation metric, ϕ3, allows assessment of LRTP in the context of the Stockholm Convention, where the ability of a chemical to elicit adverse effects in surface media is decisive. We conclude that the emission fractions approach has the potential to reduce the risk of false positives/negatives in LRTP assessments.

2022

New Environmental Monitoring Program; Microplastics in Norwegian Coastal Areas, Rivers, Lakes and Air (Mikronor)

Bråte, Inger Lise Nerland; Hurley, Rachel; Hultman, Maria Thérése; Rødland, Elisabeth Strandbråten; Buenaventura, Nina Tuscano; Singdahl-Larsen, Cecilie; van Bavel, Bert; Herzke, Dorte; Lusher, Amy

2022

Elucidating nanofibre genotoxic mechanisms: An interlaboratory approach

Burgum, Michael J.; El Yamani, Naouale; Mariussen, Espen; Rundén-Pran, Elise; Sosnowska, Anita; Reinosa, Julian J.; Alcolea-Rodriguez, Victor; Fernandez, Jose F.; Portela, Raquel; Puzyn, Tomasz; Banares, Miguel; Clift, Martin J. D.; Dusinska, Maria; Doak, Shareen H.

John Wiley & Sons

2022

Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau

Li, Wei; Chen, Jie; Li, Lu; Orsolini, Yvan J.; Xiang, Yiheng; Senan, Retish; De Rosnay, Patricia

The Tibetan Plateau (TP) contains the largest amount of snow outside the polar regions and is the source of many major rivers in Asia. An accurate long-range (i.e. seasonal) meteorological forecast is of great importance for this region. The fifth-generation seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (SEAS5) provides global long-range meteorological forecasts including over the TP. However, SEAS5 uses land initial conditions produced by assimilating Interactive Multisensor Snow and Ice Mapping System (IMS) snow data only below 1500 m altitude, which may affect the forecast skill of SEAS5 over mountainous regions like the TP. To investigate the impacts of snow assimilation on the forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow assimilation above 1500 m altitude over the TP for spring and summer 2018. Significant changes occur in the springtime. Without snow assimilation, the reforecasts overestimate snow cover and snow depth while underestimating daily temperature over the TP. Compared to satellite-based estimates, precipitation reforecasts perform better in the west TP (WTP) than in the east TP (ETP). With snow assimilation, the reforecasts of snow cover, snow depth and temperature are consistently improved in the TP in the spring. However, the positive bias between the precipitation reforecasts and satellite observations worsens in the ETP. Compared to the experiment with no snow assimilation, the snow assimilation experiment significantly increases temperature and precipitation for the ETP and around the longitude 95∘ E. The higher temperature after snow assimilation, in particular the cold bias reduction after initialization, can be attributed to the effects of a more realistic, decreased snowpack, providing favourable conditions for generating more precipitation. Overall, snow assimilation can improve seasonal forecasts through the interaction between land and atmosphere.

2022

Trends and Inferred Emissions of Atmospheric Hydrofluorocarbons (HFCs) in East Asia

Choi, Haklim; Redington, Alison; Park, Hyeri; Kim, Jooil; Thompson, Rona Louise; Kim, Yeaseul; Muhle, Jens; Salameh, Peter K.; Harth, Christina M.; Weiss, Ray F. ; Manning, Alistair J.; Park, Sunyoung

2022

State of the Climate in 2021: The Arctic

Thoman, Richard L.; Druckenmiller, Matthew L.; Moon, Twila A.; Andreassen, Liss Marie; Baker, E.; Ballinger, Thomas J.; Berner, Logan T.; Bernhard, Germar H.; Bhatt, Uma S.; Bjerke, Jarle W.; Boisvert, L.N.; Box, Jason E.; Brettschneider, B.; Burgess, D.; Butler, Amy H.; Cappelen, John; Christiansen, Hanne H; Decharme, B.; Derksen, C.; Divine, Dmitry V; Drozdov, D. S.; Elias Chereque , A.; Epstein, Howard E.; Farrell, Sinead L.; Fausto, Robert S.; Fettweis, Xavier; Fioletov, Vitali E.; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Goetz, Scott J.; Grooß, Jens-Uwe; Haas, Christian; Hanna, Edward; Hanssen-Bauer, Inger; Heijmans, M. M. P. D.; Hendricks, Stefan; Ialongo, Iolanda; Isaksen, Ketil; Jensen, C.D.; Johnsen, Bjørn; Kaleschke, L.; Kholodov, A. L.; Kim, Seong-Joong; Kohler, Jack; Korsgaard, Niels J.; Labe, Zachary; Lakkala, Kaisa; Lara, Mark J.; Lee, Simon H.; Loomis, Bryant; Luks, B.; Luojus, K.; Macander, Matthew J.; Magnússon, R. Í.; Malkova, G. V.; Mankoff, Kenneth D.; Manney, Gloria L.; Meier, Walter N.; Mote, Thomas; Mudryk, Lawrence; Müller, Rolf; Nyland, K. E.; Overland, James E.; Pàlsson, F.; Park, T.; Parker, C. L.; Perovich, Don; Petty, Alek; Phoenix, Gareth k.; Pinzon, J. E.; Ricker, Robert; Romanovsky, Vladimir E.; Serbin, S. P.; Sheffield, G.; Shiklomanov, Nikolai I.; Smith, Sharon L.; Stafford, K. M.; Steer, Adam; Streletskiy, Dimitri A.; Svendby, Tove Marit; Tedesco, Marco; Thomson, L.; Thorsteinsson, T.; Tian-Kunze, X.; Timmermans, Mary-Louise; Tømmervik, Hans; Tschudi, Mark; Tucker, C. J.; Walker, Donald A.; Walsh, John E.; Wang, Muyin; Webster, Melinda; Wehrlé, A.; Winton, Øyvind; Wolken, G.; Wood, K.; Wouters, B.; Yang, D.

American Meteorological Society

2022

Source term determination with elastic plume bias correction

Tichý, Ondřej; Šmídl, Václav; Evangeliou, Nikolaos

2022

The Covid-19 pandemic and environmental stressors in Europe: synergies and interplays

Bartonova, Alena (eds.) Colette, Augustin; Zhang, Holly; Fons, Jaume; Liu, Hai-Ying; Brzezina, Jachym; Chantreux, Adrien; Couvidat, Florian; Guerreiro, Cristina; Guevara, Marc; Kuenen, Jeroen J.P.; Solberg, Sverre; Super, Ingrid; Szanto, Courtney; Tarrasón, Leonor; Thornton, Annie; Ortiz, Alberto González

This report provides an overview of the potential impacts of Covid-19 restrictions, in particular, focusing on review and assessment of Covid-19 impacts on air quality, for the year 2020. Complementary analyses address compliance with the National Emission reductions Commitments (NEC) Directive and noise. This expands the initial analysis of impacts of the pandemic-related restrictions on air quality based on data for the first months of 2020, presented in the EEA Air quality report for 2020. The results show a clear decline in NO2 short-term levels and annual average throughout Europe. Results for other pollutants are less uniform, and mostly do not show significant changes in annual average or other relevant metrics . The results regarding air quality are robust, obtained by a wealth of methods and consistent also with literature findings. The noise analysis shows a general decline in noise levels related to road traffic, though some areas show an increase. An analysis of policies and measures reported by Member States in 2021 for base year 2019 shows that additional measures related to emissions of NH3 are expected to be negatively impacted to the greatest extent by the Covid-19 related restrictions.

ETC/ATNI

2022

Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010

Tsyro, Svetlana; Aas, Wenche; Colette, Augustin; Andersson, Camilla; Bessagnet, Bertrand; Ciarelli, Giancarlo; Couvidat, Florian; Cuvelier, Kees; Manders, Astrid; Mar, Kathleen; Mircea, Mihaela; Otero, Noelia; Pay, Maria-Teresa; Raffort, Valentin; Roustan, Yelva; Theobald, Mark, R.; Vivanco, Marta García; Fagerli, Hilde; Wind, Peter; Briganti, Gino; Cappelletti, Andrea; D'Isidoro, Massimo; Adani, Mario

The Eurodelta-Trends (EDT) multi-model experiment, aimed at assessing the efficiency of emission mitigation measures in improving air quality in Europe during 1990–2010, was designed to answer a series of questions regarding European pollution trends; i.e. were there significant trends detected by observations? Do the models manage to reproduce observed trends? How close is the agreement between the models and how large are the deviations from observations? In this paper, we address these issues with respect to particulate matter (PM) pollution. An in-depth trend analysis has been performed for PM10 and PM2.5 for the period of 2000–2010, based on results from six chemical transport models and observational data from the EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) monitoring network. Given harmonization of set-up and main input data, the differences in model results should mainly result from differences in the process formulations within the models themselves, and the spread in the model-simulated trends could be regarded as an indicator for modelling uncertainty.

The model ensemble simulations indicate overall decreasing trends in PM10 and PM2.5 from 2000 to 2010, with the total reductions of annual mean concentrations by between 2 and 5 (7 for PM10) µg m−3 (or between 10 % and 30 %) across most of Europe (by 0.5–2 µg m−3 in Fennoscandia, the north-west of Russia and eastern Europe) during the studied period. Compared to PM2.5, relative PM10 trends are weaker due to large inter-annual variability of natural coarse PM within the former. The changes in the concentrations of PM individual components are in general consistent with emission reductions. There is reasonable agreement in PM trends estimated by the individual models, with the inter-model variability below 30 %–40 % over most of Europe, increasing to 50 %–60 % in the northern and eastern parts of the EDT domain.

Averaged over measurement sites (26 for PM10 and 13 for PM2.5), the mean ensemble-simulated trends are −0.24 and −0.22 µg m−3 yr−1 for PM10 and PM2.5, which are somewhat weaker than the observed trends of −0.35 and −0.40 µg m−3 yr−1 respectively, partly due to model underestimation of PM concentrations. The correspondence is better in relative PM10 and PM2.5 trends, which are −1.7 % yr−1 and −2.0 % yr−1 from the model ensemble and −2.1 % yr−1 and −2.9 % yr−1 from the observations respectively. The observations identify significant trends (at the 95 % confidence level) for PM10 at 56 % of the sites and for PM2.5 at 36 % of the sites, which is somewhat less that the fractions of significant modelled trends. Further, we find somewhat smaller spatial variability of modelled PM trends with respect to the observed ones across Europe and also within individual countries.

The strongest decreasing PM trends and the largest number of sites with significant trends are found for the summer season, according to both the model ensemble and observations. The winter PM trends are very weak and mostly insignificant. Important reasons for that are the very modest reductions and even increases in the emissions of primary PM from residential heating in winter. It should be kept in mind that all findings regarding modelled versus observed PM trends are limited to the regions where the sites are located.

The analysis reveals considerable variability of the role of the individual aerosols in PM10 trends across European countries. The multi-model simulations, supported by available observations, point to decreases in concentrations playing an overall dominant role. Also, we see...

2022

Målinger av SO2 i omgivelsene til Elkem Carbon og REC Solar. Januar 2021 – desember 2021.

Hak, Claudia; Teigland, Even Kristian; Andresen, Erik

På oppdrag fra Elkem Carbon AS har NILU utført målinger av SO2 i omgivelsene til Elkem Carbon og REC Solar i Vågsbygd (Kristiansand kommune). Elkem Carbon har i sin tillatelse fra Miljødirektoratet krav om å gjennomføre kontinuerlig måling av SO2 i omgivelsesluft. Målingene ble utført med SO2-monitor i boligområdet på Fiskåtangen (Konsul Wilds vei). I tillegg har Elkem Carbon AS valgt å måle med passive SO2-prøvetakere ved 3 steder rundt bedriftene. Rapporten dekker målinger i perioden 1. januar – 31. desember 2021. Norske grenseverdier for luftkvalitet (SO2) ble overholdt ved Konsul Wilds vei for alle midlingsperioder krevet i forurensningsforskriften (årsmiddel, vintermiddel, døgnmiddel og timemiddel). De mest belastede stedene i måleperioden var Konsul Wilds vei nordøst og Fiskåveien rett sør for bedriftene. To døgnmidler var over 125 µg/m3 (grenseverdi, 3 tillatt), 16 døgnmidler var over øvre vurderingsterskel (75 µg/m3) og 33 døgnmidler var over nedre vurderingsterskel (50 µg/m3).

NILU

2022

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Orsolini, Yvan J.; Guttu, Sigmund; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

2022

Modeling the Dynamic Behavior of Radiocesium in Grazing Reindeer

Skuterud, Lavrans; Hevrøy, Tanya Helena; Thørring, Håvard; Ytre-Eide, Martin

Radiocesium contamination in Norwegian reindeer and the factors influencing contamination levels have been studied for more than 50 years, providing significant amounts of data. Monitoring contamination in reindeer is of utmost importance for reindeer husbandry and herders in Norway and will need to be studied for many years because of the persistent contamination levels due to the 1986 Chernobyl fallout. This paper presents a novel dynamic model that takes advantage of the large data sets that have been collected for reindeer monitoring to estimate 137Cs in reindeer meat at any given time. The model has been validated using detailed 137Cs data from one of the herds most affected by the fallout. The model basis includes detailed 137Cs soil data from aerial surveys, GPS-based knowledge of reindeer migration, and local soil-to-vegetation 137Cs transfer information. The validation exercise shows that the model satisfactorily predicts both short- and long-term changes in 137Cs concentrations in reindeer meat and suggests that the model will be a useful tool in estimating seasonal changes and evaluating possible remedial actions in case of a future fallout event.

2022

Presentasjon av NILU for Romerike batteriverk

Guerreiro, Cristina; Bogra, Shelly

2022

Publication
Year
Category