Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 357 of 390:

Publication  
Year  
Category

Modelling PCB-153 in northern ecosystems across time, space, and species using the nested exposure model

Krogseth, Ingjerd Sunde; Breivik, Knut; Frantzen, Sylvia; Nilsen, Bente Merete; Eckhardt, Sabine; Nøst, Therese Haugdahl; Wania, Frank

There is concern over possible effects on ecosystems and humans from exposure to persistent organic pollutants (POPs) and chemicals with similar properties. The main objective of this study was to develop, evaluate, and apply the Nested Exposure Model (NEM) designed to simulate the link between global emissions and resulting ecosystem exposure while accounting for variation in time and space. NEM, using environmental and biological data, global emissions, and physicochemical properties as input, was used to estimate PCB-153 concentrations in seawater and biota of the Norwegian marine environment from 1930 to 2020. These concentrations were compared to measured concentrations in (i) seawater, (ii) an Arctic marine food web comprising zooplankton, fish and marine mammals, and (iii) Atlantic herring (Clupea harengus) and Atlantic cod (Gadus morhua) from large baseline studies and monitoring programs. NEM reproduced PCB-153 concentrations in seawater, the Arctic food web, and Norwegian fish within a factor of 0.1–31, 0.14–3.1, and 0.09–21, respectively. The model also successfully reproduced measured trophic magnification factors for PCB-153 at Svalbard as well as geographical variations in PCB-153 burden in Atlantic cod between the Skagerrak, North Sea, Norwegian Sea, and Barents Sea, but estimated a steeper decline in PCB-153 concentration in herring and cod during the last decades than observed. Using the evaluated model with various emission scenarios showed the important contribution of European and global primary emissions for the PCB-153 load in fish from Norwegian marine offshore areas.

Royal Society of Chemistry (RSC)

2023

Leveraging opportunity of low carbon transition by super-emitter cities in China

Zheng, Heran; Zhang, Zengkai; Dietzenbacher, Erik; Zhou, Ya; Többen, Johannes Reinhard; Feng, Kuishuang; Moran, Daniel; Jiang, Meng; Shan, Yuli; Wang, Daoping; Liu, Xiaoyu; Li, Li; Zhao, Dandan; Meng, Jing; Ou, Jiamin; Guan, Dabo

Chinese cities are core in the national carbon mitigation and largely affect global decarbonisation initiatives, yet disparities between cities challenge country-wide progress. Low-carbon transition should preferably lead to a convergence of both equity and mitigation targets among cities. Inter-city supply chains that link the production and consumption of cities are a factor in shaping inequality and mitigation but less considered aggregately. Here, we modelled supply chains of 309 Chinese cities for 2012 to quantify carbon footprint inequality, as well as explored a leverage opportunity to achieve an inclusive low-carbon transition. We revealed significant carbon inequalities: the 10 richest cities in China have per capita carbon footprints comparable to the US level, while half of the Chinese cities sit below the global average. Inter-city supply chains in China, which are associated with 80% of carbon emissions, imply substantial carbon leakage risks and also contribute to socioeconomic disparities. However, the significant carbon inequality implies a leveraging opportunity that substantial mitigation can be achieved by 32 super-emitting cities. If the super-emitting cities adopt their differentiated mitigation pathway based on affluence, industrial structure, and role of supply chains, up to 1.4 Gt carbon quota can be created, raising 30% of the projected carbon quota to carbon peak. The additional carbon quota allows the average living standard of the other 60% of Chinese people to reach an upper-middle-income level, highlighting collaborative mechanism at the city level has a great potential to lead to a convergence of both equity and mitigation targets.

2023

Potential sources and transport of atmospheric microplastics in the Northern Atlantic Ocean

Evangeliou, Nikolaos; Gossmann, Isabel; Herzke, Dorte; Held, Andreas; Schulz, Janina; Nikiforov, Vladimir; Eckhardt, Sabine; Gerdts, Gunnar; Wurl, Oliver; Scholz-Böttcher, Barbara

2023

Atmospheric Microplastic in the Arctic and the Norwegian mainland

Herzke, Dorte; Evangeliou, Nikolaos; Bjørnsen, Astrid E.; Eckhardt, Sabine

2023

2023

The Impact of Recent European Droughts and Heatwaves on Trace Gas Surface Fluxes: Insights from Land Surface Data Assimilation

Hamer, Paul David; Trimmel, Heidelinde; Calvet, Jean-Christophe; Bonan, Bertrand; Meurey, Catherine; Vallejo, Islen; Eckhardt, Sabine; Sousa Santos, Gabriela; Marécal, Virginie; Tarrasón, Leonor

2023

On coarse patterns in the atmospheric concentration of ice nucleating particles

Conen, Franz; Yakutin, Mikhail V; Puchnin, Alexander; Yttri, Karl Espen

The atmospheric concentration of ice nucleating particles active at around −10 °C (INP−10) is very low. Nevertheless, these particles play a role in the development of cloud systems, so their spatial and temporal patterns merit attention. We collated available datasets on INP−10 to identify such patterns. Among the five low altitude observatories in northern Eurasia, median values throughout May to October were lowest in Scandinavia (4 and 6 m−3), somewhat higher in central Europe (11 m−3), substantially higher in the West Siberian Plain (69 m−3) and highest in the Central Yakutian Lowland (204 m−3), suggesting that the abundance of INP−10 in northern Eurasia may increase with continentality and from West to East. The range of values at the same observatories was narrower throughout November to April (2 to 27 m−3). On average, by an order of magnitude smaller values were reported for the four Arctic observatories. Consequently, increasing poleward transport of air masses from the midlatitudes likely raises the concentration of INP−10 in the Arctic, particularly when air masses had surface contact in eastern parts of northern Eurasia.

Elsevier

2023

Aluminium buckets and 600 degrees help researchers find microplastics in air

Solbakken, Christine Forsetlund; Herzke, Dorte; Gabrielsen, Geir Wing; Hallanger, Ingeborg G.

2023

An integrated tool for the screening of fate, persistence and long-range transport of organic chemicals

Sangion, Alessandro; Breivik, Knut; Toose, Liisa; Armitage, James M; Wania, Frank; Arnot, Jon A.

2023

NORMAN guidance on suspect and non-target screening in environmental monitoring

Hollender, Juliane; Schymanski, Emma L.; Ahrens, Lutz; Alygizakis, Nikiforos; Been, Frederic; Bijlsma, Lubertus; Brunner, Andrea M.; Celma, Alberto; Fildier, Aurelie; Fu, Qiuguo; Gago-Ferrero, Pablo; Gil-Solsona, Ruben; Haglund, Peter; Hansen, Martin; Kaserzon, Sarit; Kruve, Anneli; Lamoree, Marja; Margoum, Christelle; Meijer, Jeroen; Merel, Sylvain; Rauert, Cassandra; Rostkowski, Pawel; Samanipour, Saer; Schulze, Bastian; Shculze, Tobias; Singh, Randolph R.; Slobodnik, Jaroslav; Steininger-Mairinger, Teresa; Thomaidis, Nikolaos S.; Togola, Anne; Vorkamp, Katrin; Vulliet, Emmanuelle; Zhu, Linyan; Krauss, Martin

Increasing production and use of chemicals and awareness of their impact on ecosystems and humans has led to large interest for broadening the knowledge on the chemical status of the environment and human health by suspect and non-target screening (NTS). To facilitate effective implementation of NTS in scientific, commercial and governmental laboratories, as well as acceptance by managers, regulators and risk assessors, more harmonisation in NTS is required. To address this, NORMAN Association members involved in NTS activities have prepared this guidance document, based on the current state of knowledge. The document is intended to provide guidance on performing high quality NTS studies and data interpretation while increasing awareness of the promise but also pitfalls and challenges associated with these techniques. Guidance is provided for all steps; from sampling and sample preparation to analysis by chromatography (liquid and gas—LC and GC) coupled via various ionisation techniques to high-resolution tandem mass spectrometry (HRMS/MS), through to data evaluation and reporting in the context of NTS. Although most experience within the NORMAN network still involves water analysis of polar compounds using LC–HRMS/MS, other matrices (sediment, soil, biota, dust, air) and instrumentation (GC, ion mobility) are covered, reflecting the rapid development and extension of the field. Due to the ongoing developments, the different questions addressed with NTS and manifold techniques in use, NORMAN members feel that no standard operation process can be provided at this stage. However, appropriate analytical methods, data processing techniques and databases commonly compiled in NTS workflows are introduced, their limitations are discussed and recommendations for different cases are provided. Proper quality assurance, quantification without reference standards and reporting results with clear confidence of identification assignment complete the guidance together with a glossary of definitions. The NORMAN community greatly supports the sharing of experiences and data via open science and hopes that this guideline supports this effort.

Springer

2023

Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015

Cioni, Lara; Plassmann, Merle; Benskin, Jonathan P.; Coelho, Ana Carolina; Nøst, Therese Haugdahl; Rylander, Karin Charlotta Maria; Nikiforov, Vladimir; Sandanger, Torkjel Manning; Herzke, Dorte

Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0–4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.

2023

Environmental Contaminants in an Urban Fjord, 2022

Ruus, Anders; Grung, Merete; Jartun, Morten; Bæk, Kine; Rundberget, Thomas; Beylich, Bjørnar; Hanssen, Linda; Enge, Ellen Katrin; Borgå, Katrine; Helberg, Morten

This report presents data from the second year of a new 5-year period of the Urban Fjord programme. The programme started in 2013 and has since been altered/advanced. In 2022 the programme covers sampling and analyses of sediment, polychaetes, krill, shrimps, blue mussels, herring, cod, eider, and herring gull from the Inner Oslofjord. In addition, samples of Harbour seals from the Outer Oslofjord are analysed. A total of ~300 single compounds/isomers were analysed, and frequent detection was found of certain PFAS compounds (such as PFOS) in most matrices, certain QACs in sediment, MCCPs in most matrices (also SCCPs in birds and seals, as well as LCCPs in seals), D5 (siloxane) in all matrices, certain PBDEs (such as BDE 100) in most matrices, PCBs in all matrices, BCPS (phenolic) in seals and certain metals in all matrices. Biomagnification was observed for 28 PCB congeners and 6 PBDEs (lipid wt. basis). Furthermore, biomagnification was observed for 5 PFAS compounds, as well as for the metals As, Ag and Hg (wet wt. basis).

Norsk institutt for vannforskning

2023

Identification of POP candidates among chemicals in plastic. Screening for LRTP using the Emissions Fractions Approach

Breivik, Knut; Nikiforov, Vladimir; Davie-Martin, Cleo Lisa

There is considerable interest in identifying chemicals which have the potential to undergo long-range environmental transport (LRTP), accumulate in remote regions, and represent a possible risk to environmental and human health. In this report, we have screened a list of 1,000 organic chemicals, as well as selected brominated dioxins and furans (PBDD/Fs), for their potential to be dispersed, transferred to, and accumulated in remote regions. This screening was carried out applying a new set of LRTP metrics, collectively referred to as the emissions fractions approach (EFA), as implemented in a modified version of the OECD POV and LRTP (long-range transport potential) Screening Tool (The Tool).

NILU

2023

Reply to: The environmental footprint of fisheries

Halpern, Benjamin S.; Frazier, Melanie; Rayner, Paul-Eric; Clawson, Gage; Blanchard, Julia L.; Cottrell, Richard S.; Froehlich, Halley E.; Gephart, Jessica A.; Jacobsen, Nis Sand; Kuempel, Caitlin D.; Moran, Daniel; Nash, Kirsty L.; Williams, David R.

2023

An Approach to Assess the Biological Effects of Semi-Volatile Organic Chemicals in Indoor Air

Halse, Anne Karine; Longhin, Eleonora Marta; Bohlin-Nizzetto, Pernilla; Mariussen, Espen; Borgen, Anders; Warner, Nicholas Alexander

2023

Citizen Science for Environmental Governance in the Nordic Region

Castell, Nuria; Ponti, Marisa; Ekman, Karin; Watne, Ågot K.

2023

Arctic tropospheric ozone: assessment of current knowledge and model performance

Whaley, Cynthia; Law, Kathy S.; Hjorth, Jens Liengaard; Skov, Henrik; Arnold, Stephen R.; Langner, Joakim; Pernov, Jakob Boyd; Bergeron, Garance; Bourgeois, Ilann; Christensen, Jesper H.; Chien, Rong-You; Deushi, Makoto; Dong, Xinyi; Effertz, Peter; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Huey, Greg L.; Im, Ulas; Kivi, Rigel; Marelle, Louis; Onishi, Tatsuo; Oshima, Naga; Petropavlovskikh, Irina; Peischl, Jeff; Plummer, David A.; Pozzoli, Luca; Raut, Jean-Christophe; Ryerson, Tom; Skeie, Ragnhild Bieltvedt; Solberg, Sverre; Thomas, Manu Anna; Thompson, Chelsea R.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; von Salzen, Knut; Tarasick, David

As the third most important greenhouse gas (GHG) after carbon dioxide (CO2) and methane (CH4), tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O3 near the tropopause (∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O3 precursors (CO, NOx, and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and possibly overestimating OH. Throughout the vertical profile (compared to aircraft measurements), the MMM underestimates both CO and NOx but overestimates PAN. Perhaps as a result of competing deficiencies, the MMM O3 matches the observed O3 reasonably well. Our findings suggest that despite model updates over the last decade, model results are as highly variable as ever and have not increased in accuracy for representing Arctic tropospheric O3.

2023

Observations and retrievals of volcanic ash clouds using ground- and satallite-based sensors

Mereu, Luigi; Scollo, Simona; Bonadonna, Costanza; Corradini, Stefano; Donnadieu, Franck; Montopoli, Mario; Vulpiani, Gianfranco; Barsotti, Sara; Freret-Lorgeril, Valentin; Gudmundsson, Magnús Tumi; Kylling, Arve; Ripepe, Maurizio

2023

Publication
Year
Category