Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 10066 publications. Showing page 44 of 403:

Publication  
Year  
Category

Environmental pollutants in the terrestrial and urban environment 2021. Revised report.

Heimstad, Eldbjørg Sofie; Moe, Børge; Herzke, Dorte; Borgen, Anders; Enge, Ellen Katrin; Nordang, Unni Mette; Bæk, Kine; Nipen, Maja; Hanssen, Linda

Samples from the urban terrestrial environment in the Oslo area were analysed for metals and a large number of organic environmental pollutants. The selected samples that were analysed were soil, earthworm, fieldfare egg and liver, brown rat liver, roe deer liver, vegetation, insects and red fox liver. Biomagnification-potential was estimated based on detected data for relevant predator-prey pairs.

NILU

2023

Prevalence of tick-borne encephalitis virus in questing Ixodes ricinus nymphs in southern Scandinavia and the possible influence of meteorological factors

Lamsal, Alaka; Edgar, Kristin Skarsfjord; Jenkins, Andrew; Renssen, Hans; Kjær, Lene Jung; Alfsnes, Kristian; Bastakoti, Srijana; Dieseth, Malene Strøm; Klitgaard, Kirstine; Lindstedt, Heidi Elisabeth Heggen; Paulsen, Katrine Mørk; Vikse, Rose; Korslund, Lars; Kjelland, Vivian; Stuen, Snorre; Kjellander, Petter; Christensson, Madeleine; Teräväinen, Malin; Jensen, Laura Mark; Regmi, Manoj; Giri, Dhiraj; Marsteen, Leif; Bødker, René; Soleng, Arnulf; Andreassen, Åshild Kristine

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.

2023

Exploring microplastic contamination in reef-associated fishes of the Tropical Atlantic

Justino, Anne K.S.; Ferreira, Guilherme V.B.; Fauvelle, Vincent; Schmidt, Natascha; Lenoble, Veronique; Pelage, Latifa; Lucena-Fredou, Flavia

2023

Interim air quality maps of EEA member and cooperating countries for 2022. PM10, O3, and NO2 spatial estimates and evaluation of PM2.5 interim mapping.

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Schneider, Philipp; Benesova, Nina

This report presents European interim air quality maps for 2022, which are based on the non-validated up-to-date (UTD) measurement data and the CAMS Ensemble Forecast modelling results, together with other supplementary data. It contains maps of PM10 annual average, ozone indicator SOMO35 and NO2 annual average. Next to this, the report evaluates the PM2.5 annual mean interim mapping.

ETC/HE

2023

Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2022. Annual report.

Platt, Stephen Matthew; Svendby, Tove Marit; Hermansen, Ove; Lunder, Chris Rene; Fiebig, Markus; Fjæraa, Ann Mari; Hansen, Georg H.; Schmidbauer, Norbert; Myhre, Cathrine Lund; Stebel, Kerstin

This annual report for 2022 summarizes the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory, situated on Svalbard, during the period 2001-2022, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2022.

NILU

2023

Norwegian Arctic and Antarctic Pandora Instruments

Fjæraa, Ann Mari; Bäcklund, Are; Schulze, Dorothea; Svendby, Tove Marit; Solbakken, Christine Forsetlund

2023

Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column

Pazmiño, Andrea; Goutail, Florence; Godin-Beekmann, Sophie; Hauchecorne, Alain; Pommereau, Jean-Pierre; Chipperfield, Martyn P.; Feng, Wuhu; Lefèvre, Franck; Lecouffe, Audrey; Roozendael, Michel Van; Jepsen, Nis; Hansen, Georg H.; Kivi, Rigel; Strong, Kimberly; Walker, Kaley A.

Ozone depletion over the polar regions is monitored each year by satellite- and ground-based instruments. In this study, the vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from Système d'Analyse par Observation Zénithale (SAOZ) ground-based instruments and Multi-Sensor Reanalysis (MSR2). The passive-tracer method allows us to determine the evolution of the daily rate of column ozone destruction and the magnitude of the cumulative column loss at the end of the winter. Three metrics are used in trend analyses that aim to assess the ozone recovery rate over both polar regions: (1) the maximum ozone loss at the end of the winter, (2) the onset day of ozone loss at a specific threshold, and (3) the ozone loss residuals computed from the differences between annual ozone loss and ozone loss values regressed with respect to sunlit volume of polar stratospheric clouds (VPSCs). This latter metric is based on linear and parabolic regressions for ozone loss in the Northern Hemisphere and Southern Hemisphere, respectively. In the Antarctic, metrics 1 and 3 yield trends of −2.3 % and −2.2 % per decade for the 2000–2021 period, significant at 1 and 2 standard deviations (σ), respectively. For metric 2, various thresholds were considered at the total ozone loss values of 20 %, 25 %, 30 %, 35 %, and 40 %, all of them showing a time delay as a function of year in terms of when the threshold is reached. The trends are significant at the 2σ level and vary from 3.5 to 4.2 d per decade between the various thresholds. In the Arctic, metric 1 exhibits large interannual variability, and no significant trend is detected; this result is highly influenced by the record ozone losses in 2011 and 2020. Metric 2 is not applied in the Northern Hemisphere due to the difficulty in finding a threshold value in enough of the winters. Metric 3 provides a negative trend in Arctic ozone loss residuals with respect to the sunlit VPSC fit of −2.00 ± 0.97 (1σ) % per decade, with limited significance at the 2σ level. With such a metric, a potential quantitative detection of ozone recovery in the Arctic springtime lower stratosphere can be made.

2023

Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records

Eckhardt, Sabine; Pisso, Ignacio; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Plach, Andreas; McConnell, Joseph R.; Sigl, Michael; Ruppel, Meri; Zdanowicz, Christian; Lim, Saehee; Chellman, Nathan J; Opel, Thomas; Meyer, Hanno; Steffensen, Jørgen Peder; Schwikowski, Margit; Stohl, Andreas

Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.

2023

Health Risk Assessment of Air Pollution: assessing the environmental burden of disease in Europe in 2021

Soares, Joana; Plass, Dietrich; Kienzler, Sarah; Ortiz, Alberto González; Gsella, Artur; Horálek, Jan

This report presents the results of the environmental burden of disease (or health risk) assessment related to air pollution in 2021. The estimates include all-cause mortality and cause-specific mortality and morbidity health outcomes, with ten risk-outcome pairs considered for the cause-specific estimates. Cause-specific mortality and morbidity estimates are combined to allow assessing the overall impact on population health based on a common indicator, the disability-adjusted life year. Using estimates disaggregated by mortality and morbidity components allows for the identification of the related shares across European countries.

ETC/HE

2023

Spatial variability and temporal changes of POPs in European background air

Halvorsen, Helene Lunder; Bohlin-Nizzetto, Pernilla; Eckhardt, Sabine; Gusev, Alexey; Möckel, Claudia; Shatalov, Victor; Skogeng, Lovise Pedersen; Breivik, Knut

Concentration data on POPs in air is necessary to assess the effectiveness of international regulations aiming to reduce the emissions of persistent organic pollutants (POPs) into the environment. POPs in European background air are continuously monitored using active- and passive air sampling techniques at a limited number of atmospheric monitoring stations. As a result of the low spatial resolution of such continuous monitoring, there is limited understanding of the main sources controlling the atmospheric burdens of POPs across Europe. The key objectives of this study were to measure the spatial and temporal variability of concentrations of POPs in background air with a high spatial resolution (n = 101) across 33 countries within Europe, and to use observations and models in concert to assess if the measured concentrations are mainly governed by secondary emissions or continuing primary emissions. Hexachlorobenzene (HCB) was not only the POP detected in highest concentrations (median: 67 pg/m3), but also the only POP that had significantly increased over the last decade. HCB was also the only POP that was positively correlated to latitude. For the other targeted POPs, the highest concentrations were observed in the southern part of Europe, and a declining temporal trend was observed. Spatial differences in temporal changes were observed. For example, γ-HCH (hexachlorocyclohexane) had the largest decrease in the south of Europe, while α-HCH had declined the most in central-east Europe. High occurrence of degradation products of the organochlorine pesticides and isomeric ratios indicated past usage. Model predictions of PCB-153 (2,2’,4,4’,5,5’-hexachlorobiphenyl) by the Global EMEP Multi-media Modelling System suggest that secondary emissions are more important than primary emissions in controlling atmospheric burdens, and that the relative importance of primary emissions are more influential in southern Europe compared to northern Europe. Our study highlights the major advantages of combining high spatial resolution observations with mechanistic modelling approaches to provide insights on the relative importance of primary- and secondary emission sources in Europe. Such knowledge is considered vital for policy makers aiming to assess the potential for further emission reduction strategies of legacy POPs.

2023

Kartlegging av svevestøv fra anleggsvirksomhet i Lørenskog kommune. Målinger i perioden april – august 2022.

Hak, Claudia; Lopez-Aparicio, Susana; Grythe, Henrik; Markelj, Miha; Vo, Dam Thanh; Høiskar, Britt Ann Kåstad

I et samarbeidsprosjekt med Lørenskog kommune utførte NILU en målekampanje rundt ett av boligbyggeprosjektene på Lørenskog. Formålet med målingene var å få økt kunnskap om svevestøvnivåer i omgivelsene til anleggsplasser. Målingene ble utført ved 2 steder rundt en byggeplass på Skårerbyen.
Måleresultatene viser at PM10 nivået var høyere rundt anleggsplassen enn ved en nærliggende veinær målestasjon. Observasjonene tyder på at anleggsaktivitet var årsaken. Et viktig resultat fra målekampanjen er at målinger av svevestøv med optiske målemetoder ikke anses som egnet i områder der anleggsstøv dominerer.

NILU

2023

INQUIRE - Improving Indoor Air Quality and Health: Identification of Chemical and Biological Determinants, their Sources, and Strategies to Promote Healthier Homes in Europe

Nipen, Maja; Bohlin-Nizzetto, Pernilla; Melymuk, Lisa; Leonards, P.; Wincent, E.; Giorio, C.; Schenk, L.; Theunis, J.; Rostkowski, Pawel

2023

Local sources of organic contaminants in the Arctic environment

Kallenborn, Roland; Ali, Aasim Musa Mohamed; Drotikova, Tatiana; Hartz, William Frederik

2023

Some facts on plastic additives

Nikiforov, Vladimir

2023

EUROqCHARM Capacity building workshop

Nikiforov, Vladimir; Stoica, Elena; Farre, Marinella

2023

Sources and long-range transport of atmospheric microplastics in the Northern Atlantic Ocean

Gossmann, Isabel; Herzke, Dorte; Held, Andreas; Schulz, Janina; Nikiforov, Vladimir; Georgi, Christoph; Evangeliou, Nikolaos; Eckhardt, Sabine; Gerdts, Gunnar; Wurl, Oliver; Scholz-Böttcher, Barbara

2023

Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling

Marécal, Virginie; Voisin-Plessis, Ronan; Roberts, Tarda Jane; Aiuppa, Alessandro; Narivelo, Herizo; Hamer, Paul David; Josse, Beatrice; Guth, Jonathan; Surl, Luke

HBr emissions from volcanoes lead rapidly to the formation of BrO within volcanic plumes and have an impact on tropospheric chemistry, at least at the local and regional scales. The motivation of this paper is to prepare a framework for further 3D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. The main aim is to evaluate the ability of the model to produce a realistic partitioning of bromine species within a grid box size typical of MOCAGE (Model Of atmospheric Chemistry At larGE scale) 3D (0.5∘ × 0.5∘). This work is based on a 1D single-column configuration of the global chemistry-transport model MOCAGE that has low enough computational cost to allow us to perform a large set of sensitivity simulations. This paper uses the emissions from the Mount Etna eruption on 10 May 2008. Several reactions are added to MOCAGE to represent the volcanic plume halogen chemistry. A simple plume parameterisation is also implemented and tested. The use of this parameterisation tends to only slightly limit the efficiency of BrO net production. Both simulations with and without the parameterisation give results for the partitioning of the bromine species, of ozone depletion and of the ratio that are consistent with previous studies.

A series of test experiments were performed to evaluate the sensitivity of the results to the composition of the emissions (primary sulfate aerosols, Br radical and NO) and to the effective radius assumed for the volcanic sulfate aerosols. Simulations show that the plume chemistry is sensitive to all these parameters. We also find that the maximum altitude of the eruption changes the BrO production, which is linked to the vertical variability of the concentrations of oxidants in the background air. These sensitivity tests display changes in the bromine chemistry cycles that are generally at least as important as the plume parameterisation. Overall, the version of the MOCAGE chemistry developed for this study is suitable to produce the expected halogen chemistry in volcanic plumes during daytime and night-time.

2023

Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials

Elje, Elisabeth; Mariussen, Espen; McFadden, Erin; Dusinska, Maria; Rundén-Pran, Elise

For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R’s to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air–liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.

2023

Publication
Year
Category