Found 10008 publications. Showing page 1 of 401:
Nitrogen dioxide (NO2) is a well-known air pollutant, mostly elevated by car traffic in cities. To date, small, reliable, cost-efficient multipollutant sensors with sufficient power and accuracy for community-based atmospheric studies are still lacking. The HAPADS (highly accurate and autonomous programmable platforms for providing air pollution data services) platforms, developed and tested in real conditions, can be a possible approach to solving this issue. The developed HAPADS platforms are equipped with three different NO2 sensors (7E4-NO2–5, SGX-7NO2, MICS-2711 MOS) and a combined ambient air temperature, humidity, and pressure sensor (BME280). The platforms were tested during the driving test, which was conducted across various roads, including highways, expressways, and national and regional routes, as well as major cities and the countryside, to analyse the environmental conditions as much as possible (Poland, 2024). The correlation coefficient r was more than 0.8, and RMSE (root mean squared error) was in the 3.3–4.3 μg/m3 range during the calibration process. The results obtained during the driving tests showed R2 of 0.9–1.0, which proves the ability of HAPADS platforms to work in the hard environmental conditions (including high rain and snow, as well as sun and a wide range of temperatures and humidity).
2026
Assessing the siting of air quality sampling points at industrial sites
Air quality measurements at industrial locations are intended to assess emission sources typically of the largest magnitude, many of which operate over a long time and are subject to specific permitting rules. Industrial sources represent a significant contribution to the air pollution that people and ecosystems are exposed to. Therefore, appropriately sited sampling points are essential to understanding the characteristics of these emissions, which is necessary to design meaningful monitoring network, implement effective abatement strategies, and inform supplementary assessment methods such as dispersion modelling. Existing environmental legislation establishes criteria for the reporting of industrial emissions and for the design of monitoring networks on pollutant concentrations: 1) the Industrial Emissions Directive (IED), 2) the Regulation on European Pollutant Release and Transfer Register (E-PRTR), and 3) the Ambient Air Quality Directives (AAQDs, Directives 2008/50/EC and 2004/107/EC, as well as the Revised Directive (EU) 2024/2881). The AAQDs provide rules and guidance for monitoring stations across different environments, including specific rules for those classified as industrial. In this study we have evaluated the air quality monitoring sampling points associated with industrial sources. The overarching aim is to underpin assessments by the European Commission of whether the criteria for placing industrial sampling points are applied throughout the European Union in a harmonised manner and whether the application of the criteria ensures that the highest exposure of the general population to air pollution from industrial sources is measured in all air quality zones. For this reason, we have carried out an evaluation of the 2019 monitoring network across Europe in the vicinity of industrial sources.
Publications Office of the European Union
2025
2025
Reliable quantification of polychlorinated alkanes (PCAs) remains a major challenge, hindering environmental research across diverse matrices. Each sample can contain over 500 homologue groups, collectively producing >1000 m/z ratios that require interference checks. High-resolution mass spectrometry methods vary in ionization signals and data formats and require specialized algorithms for quantification. CPxplorer streamlines data processing through the integration of three modules: (1) CPions generates target ion sets and isotopic thresholds for compound identification into the next module; (2) Skyline performs instrument-independent data integration, interference evaluation, and homologue profiling; and (3) CPquant deconvolves homologues and reports concentrations using reference standards and homologue profiles from Skyline. Evaluation of the workflow with NIST-SRM-2585 dust and ERM-CE100 fish tissue material yielded comparable results across raw data formats from different instruments. Further applications of CPxplorer across diverse matrices, including indoor dust, organic films, silicone wrist bands, and food samples, demonstrated the usefulness in biological and environmental monitoring. Compared to existing tools limited to qualitative detection, CPxplorer enables quantitative outputs, reduces processing time, and expands functionality to PCA-like substances (e.g., BCAs) and PCA degradation products (e.g., OH-PCAs). CPxplorer reduces learning barriers, empowers users to quantify PCAs across various analytical instruments, and contributes to generating comparable results in the field.
2025
Tidal Amplification in the Lower Thermosphere During the 2003 October–November Solar Storms
Abstract Using the National Center for Atmospheric Research's vertically extended version of the Whole Atmosphere Community Climate Model nudged with reanalyses, we examine the impact of the 2003 Halloween solar storms on atmospheric tides and planetary waves in the lower thermosphere (LT). One of the largest solar flares and fastest coronal mass ejections on record occurred on 30 October, resulting in significant energy transfer via Joule heating and auroral particle precipitation in the Earth's higher latitude thermosphere. In the simulation, that occurrence creates large zonally asymmetric heating perturbations, amplifying the diurnal migrating tide (DW1), semidiurnal migrating tide (SW2), as well as non‐migrating westward and eastward tides between 120 and 200 km. Large‐amplitude bursts of DW1 in the Northern Hemisphere and non‐migrating westward tides in the Southern Hemisphere lead to westward wave forcings, which strengthen the thermospheric wind. Planetary waves are also amplified, but their forcing is much weaker than the forcing exerted by tides in the LT. Non‐migrating tides are generated by nonlinear interactions between tides, or between tides and quasi‐stationary planetary waves, and in situ processes in the LT linked to Joule heating and auroral particle precipitation. The induced disruptions of the thermospheric mean meridional circulation reinforce the Spring thermospheric branch in the Southern Hemisphere at high latitudes and oppose the Fall branch in the Northern Hemisphere. Our examination could be relevant to understand the dynamical impact of recent geomagnetic storms that occurred in May 2024 and October 2024.
2025
2025
The role of the tropical carbon balance in determining the large atmospheric CO2 growth rate in 2023
Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958, comparable to values recorded during previous major El Niño events. We do not fully understand this anomalous growth rate, although a recent study highlighted the role of boreal North American forest fires. We use a Bayesian inverse method to interpret global-scale atmospheric CO2 data from NASA's Orbiting Carbon Observatory (OCO-2). The resulting a posteriori CO2 flux estimates reveal that from 2022 to 2023, the biggest changes in CO2 fluxes of net biosphere exchange (NBE) – for which positive values denote a flux to the atmosphere – were over the land tropics. We find that the largest NBE increase is over eastern Brazil, with small increases over southern Africa and Southeast Asia. We also find significant increases over southeastern Australia, Alaska, and western Russia. A large NBE increase over boreal North America, due to fires, is driven by our a priori inventory, informed by independent data. The largest NBE reductions are over western Europe, the USA, and central Canada. Our NBE estimates are consistent with gross primary production estimates inferred from satellite observations of solar-induced fluorescence and from satellite observations of vegetation greenness. We find that warmer temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrological changes more important elsewhere across the tropics. Our results suggest that the ongoing environmental degradation of the Amazon is now playing a substantial role in increasing the global atmospheric CO2 growth rate.
2025
Melkøya ferskvann, nedbør, vegetasjon og jord 2024
I 2024 var det igjen tid for den tradisjonelle overvåkningen av ferskvann. I forbindelse med endringer i produksjonen og mulige økte utslipp av kvikksølv ble det gjort enkelte endringer i programmet for ferskvann samtidig som det ble iverksatt undersøkelser av kvikksølv (Hg), bly (Pb) og polysykliske aromatiske hydrokarboner (PAH) i nedbør, vegetasjon og jord. I det nye programmet er det god samlokalisering mellom prøvetakingsstasjoner for ferskvann, nedbør, vegetasjon og jordprøver.
Det ble gjennomført innsamling av prøver i ferskvann, nedbør, vegetasjon og jord fra starten av september.
Akvaplan-niva
2025
Satellite instruments for measuring atmospheric column mixing ratios have improved significantly over the past couple of decades, with increases in pixel resolution and accuracy. As a result, satellite observations are being increasingly used in atmospheric inversions to improve estimates of emissions of greenhouse gases (GHGs), particularly CO2 and CH4, and to constrain regional and national emission budgets. However, in order to make use of the increasing resolution in inversions, the atmospheric transport models used need to be able to represent the observations at these finer resolutions. Here, we present a new and computationally efficient methodology to model satellite column average mixing ratios with a Lagrangian particle dispersion model (LPDM) and calculate the Jacobian matrices describing the relationship between surface fluxes of GHGs and atmospheric column average mixing ratios, as needed in inversions. The development will enable a more accurate representation of satellite observations (especially high-resolution ones) via the use of LPDMs and, thus, help improve the accuracy of emission estimates obtained by atmospheric inversions. We present a case study using this methodology in the FLEXPART (FLEXible PARTicle dispersion model) LPDM and the FLEXINVERT inversion framework to estimate CH4 fluxes over Siberia using column average mixing ratios of CH4 (XCH4) from the TROPOMI (TROPOspheric Monitoring Instrument) instrument aboard the Sentinel-5P satellite. The results of the inversion using TROPOMI XCH4 are evaluated against results using ground-based observations.
2025
Removal Processes of the Stratospheric SO2 Volcanic Plume From the 2015 Calbuco Eruption
Abstract We analyze the volcanic plume from the April 2015 Calbuco eruption over a 35‐day period using simulations from Meso‐NH, a non‐hydrostatic mesoscale atmospheric model. A dedicated parameterization of the deep injection of the plume into the stratosphere ensures a realistic representation when compared to Infrared Atmospheric Sounding Interferometer satellite observations. During the first 12 hr of the eruption, on 22 April 2015, SO 2 mixing ratio reached 29 ppmv between 15 and 18 km for the first eruption pulse, and 38 ppmv between 12 and 16 km for the second. Most SO 2 was injected directly into the stratosphere, with a stratospheric load reaching 308 ktS (kilotons of atomic sulfur, i.e. 616 kilotons of SO 2 ) after the eruption. After 1 month, both stratospheric and tropospheric SO 2 loads returned to near‐background levels. During analysis, the chemical conversion of SO 2 into H 2 SO 4 removed a part of SO 2 from the stratosphere. During the long‐range advection, the co‐location between the subtropical jet stream and the Calbuco plume led to three significant stratospheric intrusions on 24, 26 and 28 April 2015. These events transferred stratospheric SO 2 into the troposphere, SO 2 mixing ratios in the upper troposphere reaching 15 ppmv, 26 and 15 ppbv, respectively. SO 2 is gradually oxidized into H 2 SO 4 , with up to 5 ktS of gaseous H 2 SO 4 in the stratosphere on 30 April, but dynamical processes dominate the SO 2 atmospheric budget over chemical transformations. This study demonstrates that stratospheric intrusions can play a critical role in the removal of volcanic material from the stratosphere following a major eruption.
2025
Human biomonitoring (HBM) provides an integrated chemical exposures assessment considering all routes and sources of exposure. The accurate interpretation and comparability of biomarkers of exposure and effect depend on harmonized, quality-assured sampling, processing, and analysis. Currently, the lack of broadly accepted guidance on minimum information required for collecting and reporting HBM data, hinders comparability between studies. Furthermore, it prevents HBM from reaching its full potential as a reliable approach for assessing and managing the risks of human exposure to chemicals.
The European Chapter of the International Society of Exposure Science HBM Working Group (ISES Europe HBM working group) has established a global human biomonitoring community network (HBM Global Network) to develop a guidance to define the minimum information to be collected and reported in HBM, called the “Minimum Information Requirements for Human Biomonitoring (MIR-HBM)”. This work builds on previous efforts to harmonize HBM worldwide.
The MIR-HBM guidance covers all phases of HBM from the design phase to the effective communication of results. By carefully defining MIR for all phases, researchers and health professionals can make their HBM studies and programs are robust, reproducible, and meaningful. Acceptance and implementation of MIR-HBM Guidelines in both the general population and occupational fields would improve the interpretability and regulatory utility of HBM data. While implementation challenges remain—such as varying local capacities, and ethical and legal differences at the national levels, this initiative represents an important step toward harmonizing HBM practice and supports an ongoing dialogue among policymakers, legal experts, and scientists to effectively address these challenges. Leveraging the data and insights from HBM, policymakers can develop more effective strategies to protect public health and ensure safer working environments.
2025
Statusrapport 2025. Nasjonalt referanselaboratorium for luftkvalitetsmålinger
Denne rapporten oppsummerer oppgavene til Nasjonalt referanselaboratorium for luftkvalitetsmålinger (NRL), delkontrakt 1b, for første halvår 2025.
NILU
2025
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual report 2024
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2024 was characterized by high total ozone values most of the year, especially in the Arctic stations in March. For Ny-Ålesund, 2024 showed the highest annual average total ozone value since systematic ground-based ozone measurements started in 1997.
NILU
2025
2025
2025
Tire particles can enter the marine environment e.g. through direct discharge of road runoff, sewage systems or riverine inputs. Their fate in marine waters remains largely unknown, though the deep sea could be a final sink as for other marine litter. To simulate these conditions, we investigated in laboratory-controlled conditions the effects of high-hydrostatic pressure [20 MPa] vs atmospheric pressure [0.1 MPa] on the leaching of 17 organic compounds from cryo-milled tire tread particles (μm sized) and crumb rubber particles (mm sized) into natural seawater. We monitored the abundance of heterotrophic prokaryotes in the leachates over the 14 day exposure period under biotic conditions. Abiotic controls were employed to delineate the influence of prokaryotes on the fate of leached chemicals. Our results showed leaching of dissolved organic carbon and target chemicals under all experimental conditions, with higher concentrations of certain target chemicals under high-hydrostatic pressure conditions (e.g., 1,3-diphenylguanidine [DPG]: max. 703 (20 MPa) vs 119 μg/L (0.1 MPa) from cryo-milled tire tread particles under biotic conditions). Under abiotic conditions leaching was weaker for DPG and other chemicals, with contrasting trends for chemicals prone to biotransformation. In crumb rubber leachates chemical concentrations increased with time, but showed no significant differences between biotic/abiotic or high-hydrostatic/atmospheric pressure conditions. Prokaryotic abundance increased in all samples containing tire particles compared to seawater controls, indicating the use of the rubber and/or leached chemicals as an energy source.
2025
Car tire particles and their additives: biomarkers for recent exposure in marine environments
Car tire particles represent an important category of microplastics that is difficult to alleviate. The particles stem from abrasion during driving, so-called tire wear particles (TWPs), down-cycled end-oflife tire granulate, popular as low-cost infill on sports fields, or degradation products from discarded tires. The material contains a variety of additives and chemical residues from the manufacturing process, including metals, especially high concentrations of zinc, polycyclic aromatic hydrocarbons (PAHs), and benzothiazoles, but also para-phenylenediamines (PPDs) and numerous other organic chemicals. In urbanized areas, TWPs are emitted from roads, and granulates disperse from artifical sports fields and other urban surfaces to the environment, suggesting that runoff to coastal systems is likely and a route of exposure to marine organisms. Recent experimental studies show tire rubber
particles in marine animals from different functional groups in addition to uptake of tire-related organic chemicals into biological tissues. These include bivalves, crabs, and fish, representing different body sizes, marine habitats, and feeding modes, and thus varying exposure scenarios. Our findings from GC-HRMS SIM chromatography demonstrate that different marine species ingest tire rubber particles, and that several tire additives are taken up into tissues post-ingestion. Although the organic chemicals do not seem to bioaccumulate, they are specific and bioavailable chemicals in tire materials. Mapping of tire rubber particle distributions in coastal systems, dose-response toxicity
testing and risk assessments of environmental concentrations are thus warranted, also with a view to potential trophic transfer and implications for human health.
2025
Divergent impacts of climate interventions on China’s north-south water divide
Abstract Solar radiation modification-based climate interventions may cause uneven regional hydrological changes while mitigating warming. Here, we investigate the effects of climate interventions on China’s North Drought-South Flood pattern using the Norwegian Earth System Model supplemented by volcanic data. Our results indicate that equatorial stratospheric aerosol injection could mitigate the north-south water divide by reducing inter-hemispheric and equator-to-North-pole temperature gradients, thereby modifying atmospheric circulation and the East Asian monsoon to increase precipitation and surface runoff in northern China while reducing them in the south, compared to the high emissions scenario. This mechanism is supported by observed precipitation changes following the Mount Pinatubo volcanic eruption. In contrast, marine cloud brightening may intensify southern flood risks, while cirrus cloud thinning and moderate emissions reduction might exacerbate northern droughts. Our findings reveal distinct regional hydroclimatic impacts of different climate interventions, highlighting potential synergies and trade-offs between their global intervention efficacy and regional water security.
2025
Analysis of source regions and transport pathways of sub-micron aerosol components in Europe
It is important to study aerosols and their origins, as they pose various negative health and environmental impacts. In this study, we combined year-long datasets from 15 different countries with Trajectory Statistical Methods (TSMs) for the first time at this comprehensive scale. We found possible source regions and seasonal variations of various particulate matter (PM) components in Europe, including total organic aerosol (OA), biomass burning OA (BBOA), oxygenated OA (OOA), ammonium (NH4), nitrate (NO3), and sulphate (SO4). We found that for all of the studied components, Eastern Europe was among the highest contributors. For NO3, other important source regions were Northern France and the Benelux, while for SO4 there were significant contributions from the Mediterranean region. We also compared our measurement-based model with simulated concentrations of an atmospheric chemistry transport model (CAMx). We observed a satisfactory agreement in regions where we had sufficient coverage with air pollution monitoring stations. The main deviations for OA were found around the Po Valley, where CAMx consistently estimated higher concentrations, while the TSM analysis did not highlight it as a hotspot because long-term monitoring datasets in this region are lacking. CAMx also underestimated the concentrations around Poland, mainly from residential burning. Our results provide opportunities to refine European emission inventories and deliver valuable information on long-range transported air pollutants. This work suggests that policies mitigating air pollution in Eastern Europe and the Benelux could help improve overall air quality in entire Europe more efficiently.
2025