Found 9414 publications. Showing page 3 of 377:
The Sentinel-5 Precursor (S5P) satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) on a Sun-synchronous low-Earth orbit since 13 October 2017. The S5P mission has acquired more than 5 years of TROPOMI nadir ozone profile data retrieved from the level 0 to 1B processor version 2.0 and the level 1B to 2 optimal-estimation-based processor version 2.4.0. The latter is described in detail in this work, followed by the geophysical validation of the resulting ozone profiles for the period May 2018 to April 2023. Comparison of TROPOMI ozone profile data to co-located ozonesonde and lidar measurements used as references concludes to a median agreement better than 5 % to 10 % in the troposphere. The bias goes up to −15 % in the upper stratosphere (35–45 km) where it can exhibit vertical oscillations. The comparisons show a dispersion of about 30 % in the troposphere and 10 % to 20 % in the upper troposphere to lower stratosphere and in the middle stratosphere, which is close to mission requirements. Chi-square tests of the observed differences confirm on average the validity of the ex ante (prognostic) satellite and ground-based data uncertainty estimates in the middle stratosphere above about 20 km. Around the tropopause and below, the mean chi-square value increases up to about four, meaning that the ex ante TROPOMI uncertainty is underestimated. The information content of the ozone profile retrieval is characterised by about five to six vertical subcolumns of independent information and a vertical sensitivity (i.e. the fraction of the information that originates from the measurement) nearly equal to unity at altitudes from about 20 to 50 km, decreasing rapidly at altitudes above and below. The barycentre of the retrieved information is usually close to the nominal retrieval altitude in the 20–50 km altitude range, with positive and negative offsets of up to 10 km below and above this range, respectively. The effective vertical resolution of the profile retrieval usually ranges within 10–15 km, with a minimum close to 7 km in the middle stratosphere. Increased sensitivities and higher effective vertical resolutions are observed at higher solar zenith angles (above about 60°), as can be expected, and correlate with higher retrieved ozone concentrations. The vertical sensitivity of the TROPOMI tropospheric ozone retrieval is found to depend on the solar zenith angle, which translates into a seasonal and meridian dependence of the bias with respect to reference measurements. A similar although smaller effect can be seen for the viewing zenith angle. Additionally, the bias is negatively correlated with the surface albedo for the lowest three ozone subcolumns (0–18 km), despite the albedo's apparently slightly positive correlation with the retrieval degrees of freedom in the signal. For the 5 years of TROPOMI ozone profile data that are available now, an overall positive drift is detected for the same three subcolumns, while a negative drift is observed above (24–32 km), resulting in a negligible vertically integrated drift.
2024
In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2-eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO2-eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO2 and of all GHGs combined.
American Geophysical Union (AGU)
2024
The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O
Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.
American Geophysical Union (AGU)
2024
The participation of a diverse –in terms of geography, discipline and gender– group of Early Career Researchers (ECRs) in the peer review process can help alleviate the workload of senior researchers and counteract the perceptual biases that the latter tend to show. Moreover, ECRs can benefit from developing skills that are often not included in educational programs. From 2018 to 2021, the Association of Polar Early Career Scientists, in collaboration with other associations, organized six group reviews of the Intergovernmental Panel on Climate Change (IPCC) reports by a total of more than 600 ECRs from over 70 different countries. This study aims to evaluate this group review in terms of its contribution to the production of scientific knowledge, and as a career development opportunity for ECRs. The data analyzed consists of application forms, review comments, and feedback surveys that were collected during each review process. The results of this study show that, overall, the group reviews were a success in terms of the experience of ECRs and their contribution to the peer review of the IPCC reports. Most survey respondents considered the general organization of the group reviews satisfactory and expressed interest in participating in future group reviews. However, most participants did not engage in discussions with their peers, which constitutes a missed opportunity to engage in active learning and the shared production of knowledge. ECRs made a significant contribution to the review of the IPCC reports by producing an average of 2,422 ± 532 comments per group review, 36% of which were substantive. PhD students were shown to be as proficient reviewers as postdoctoral researchers and faculty reviewers. More importantly, the diversity of reviewers in terms of geography and discipline, together with the fact that they are ECRs, can help produce more balanced scientific reports since they bring new perspectives, thus counteracting the biases that senior researchers have. These group reviews could be improved by providing more comprehensive training and facilitating communication among reviewers so that they can engage in meaningful exchanges. We conclude that the IPCC should formalize the inclusion of ECRs in future reviews of the IPCC reports.
Frontiers Media S.A.
2024
The Chinese Loess Plateau (CLP) in northern China is home to one of the most prominent loess records in the world, reflecting past eolian dust activity in East Asia. However, their interpretation is hampered by ambiguity in the origin of loess-forming dust and an incomplete understanding of the circulation forcing dust accumulation. In this study, we used a novel modeling approach combining a dust emission model FLEXDUST with simulated back trajectories from FLEXPART to trace the dust back to where it was emitted. Over 21 years (1999–2019), we modeled back trajectories for fine (∼2 μm) and super-coarse (∼20 μm) dust particles at six CLP sites during the peak dust storm season from March to May. FLEXPART source-receptor relationships are combined with the dust emission inventory from FLEXDUST to create site-dependent high-resolution maps of the source contribution of deposited dust. The nearby dust emission areas were found to be the main source of dust to the CLP. Dust deposition across the CLP was found to predominantly occur via wet removal, with also some super-coarse dust from distant emission regions being wet deposited following high-level tropospheric transport. The high topography located on the downwind side of the emission area plays an essential role in forcing the emitted super-coarse dust upward. On an interannual scale, the phase of the Arctic Oscillation in the preceding winter was found to have a strong association with the spring deposition rate on the CLP, while the strength of the East Asian Winter Monsoon was less influential.
American Geophysical Union (AGU)
2024
Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9–C12) and heavier burdens of longer chain PFCAs (C13–C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.
2024
Nitrogen trifluoride (NF3) is a potent and long-lived greenhouse gas that is widely used in the manufacture of semiconductors, photovoltaic cells, and flat panel displays. Using atmospheric observations from eight monitoring stations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and inverse modeling with a global 3-D atmospheric chemical transport model (GEOS-Chem), we quantify global and regional NF3 emission from 2015 to 2021. We find that global emissions have grown from 1.93 ± 0.58 Gg yr–1 (± one standard deviation) in 2015 to 3.38 ± 0.61 Gg yr–1 in 2021, with an average annual increase of 10% yr–1. The available observations allow us to attribute significant emissions to China (0.93 ± 0.15 Gg yr–1 in 2015 and 1.53 ± 0.20 Gg yr–1 in 2021) and South Korea (0.38 ± 0.07 Gg yr–1 to 0.65 ± 0.10 Gg yr–1). East Asia contributes around 73% of the global NF3 emission increase from 2015 to 2021: approximately 41% of the increase is from emissions from China (with Taiwan included), 19% from South Korea, and 13% from Japan. For Japan, which is the only one of these three countries to submit annual NF3 emissions to UNFCCC, our bottom-up and top-down estimates are higher than reported. With increasing demand for electronics, especially flat panel displays, emissions are expected to further increase in the future.
2024
A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986–2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2–4% of the EOF, fluorinated pharmaceuticals accounted for 0–63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1–3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.
2024
Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63–98%), and MCCPs dominated the total CP load (42–68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.
2024
The adverse outcome pathway (AOP) framework plays a crucial role in the paradigm shift of toxicity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only initial efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating knowledge on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. Several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. However, the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physicochemical characteristics, and NM-relevant mitochondrial MIEs were rarely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development of AOPs for NMs.
Elsevier
2024
IEEE (Institute of Electrical and Electronics Engineers)
2024
Two-Stage Feature Engineering to Predict Air Pollutants in Urban Areas
Air pollution is a global challenge to human health and the ecological environment. Identifying the relationship among pollutants, their fundamental sources and detrimental effects on health and mental well-being is critical in order to implement appropriate countermeasures. The way forward to address this issue and assess air quality is through accurate air pollution prediction. Such prediction can subsequently assist governing bodies in making prompt, evidence-based decisions and prevent further harm to our urban environment, public health, and climate, all of which co-benefit our economy. In this study, the main objective is to explore the strength of features and proposed a two stage feature engineering approach, which fuses the advantage of influential factors along with the decomposition approach and generates an optimum feature combination for five major pollutants including Nitrogen Dioxide (NO 2 ), Ozone (O 3 ), Sulphur Dioxide (SO 2 ), and Particulate Matter (PM2.5, and PM10). The experiments are conducted using a dataset from 2015 to 2020 which is publicly available and is collected from Belfast-based air quality monitoring stations in Northern Ireland, UK. In stage-1, using the dataset new features such as trigonometric and statistical features are created to capture their dependency on the target pollutant and generated correlation-inspired best feature combinations to improve forecasting model performance. This is further enhanced in stage-2 by an optimum feature combination which is an integration of stage-1 and Variational Mode Decomposition (VMD) based features. This study employed a simplified Long Short Term Memory (LSTM) neural network and proposed a single-step forecasting model to predict multivariate time series data. Three performance indicators are used to evaluate the effectiveness of forecasting model: (a) root mean square error (RMSE), (b) mean absolute error (MAE), and (c) R-squared (R 2 ). The results demonstrate the effectiveness of proposed approach with 13% improvement in performance (in terms of R 2 ) and the lowest error scores for both RMSE and MAE.
IEEE (Institute of Electrical and Electronics Engineers)
2024
An AI-Enhanced Systematic Review of Climate Adaptation Costs: Approaches and Advancements, 2010–2021
This study addresses the critical global challenge of climate adaptation by assessing the inadequacies in current methodologies for estimating adaptation costs. Broad assessments reveal a significant investment shortfall in adaptation strategies, highlighting the necessity for precise cost analysis to guide effective policy-making. By employing the PRISMA 2020 protocol and enhancing it with the prismAId tool, this review systematically analyzes the recent evolution of cost assessment methodologies using state-of-the-art generative AI. The AI-enhanced approach facilitates rapid and replicable research extensions. The analysis reveals a significant geographical and sectoral disparity in research on climate adaptation costs, with notable underrepresentation of crucial areas and sectors that are most vulnerable to climate impacts. The study also highlights a predominant reliance on secondary data and a lack of comprehensive uncertainty quantification in economic assessments, suggesting an urgent need for methodological enhancements. It concludes that extending analyses beyond merely verifying that benefits exceed costs is crucial for supporting effective climate adaptation. By assessing the profitability of adaptation investments, it becomes possible to prioritize these investments not only against similar interventions but also across the broader spectrum of public spending.
MDPI
2024
2024
High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage
In the modern “omics” era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography–HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
2024
2024
2024
This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.
Springer
2024
Satellite observations from instruments such as the TROPOspheric Monitoring Instrument (TROPOMI) show significant potential for monitoring the spatiotemporal variability of NO2, however they typically provide vertically integrated measurements over the tropospheric column. In this study, we introduce a machine learning approach entitled ‘S-MESH’ (Satellite and ML-based Estimation of Surface air quality at High resolution) that allows for estimating daily surface NO2 concentrations over Europe at 1 km spatial resolution based on eXtreme gradient boost (XGBoost) model using primarily observation-based datasets over the period 2019–2021. Spatiotemporal datasets used by the model include TROPOMI NO2 tropospheric vertical column density, night light radiance from the Visible Infrared Imaging Radiometer Suite (VIIRS), Normalized Difference Vegetation Index from the Moderate Resolution Imaging Spectroradiometer (MODIS), observations of air quality monitoring stations from the European Environment Agency database and modeled meteorological parameters such as planetary boundary layer height, wind velocity, temperature. The overall model evaluation shows a mean absolute error of 7.77 μg/m3, a median bias of 0.6 μg/m3 and a Spearman rank correlation of 0.66. The model performance is found to be influenced by NO2 concentration levels, with the most reliable predictions at concentration levels of 10–40 μg/m3 with a bias of
2024
2024
Understanding thermal comfort expectations in older adults: The role of long-term thermal history
Understanding how long-term thermal history affects thermal comfort expectations in older adults (65+) has implications for designing energy-efficient spaces in a changing climate. A growing number of studies focus on thermal sensation/preference votes to represent the current thermal comfort expectations, often overlooking their limitations. This study, however, investigates how factors shaping long-term thermal history link to the current 65+ adults indoor thermal comfort expectations during exposure to heat, by focusing on the upper limit of thermally acceptable temperature range, represented by a self-reported temperature threshold at which 65+ adults believe to feel uncomfortable by indoor heat (Tit). To find Tit, we use answers to “Above what temperature do you start feeling too hot indoors?” by survey respondents in Warsaw (n = 678) and Madrid (n = 527), who lived in their apartment ≥5 years. Statistically, we find indoor factors affecting long-term thermal experiences more significant in explaining 65+ Tit, when compared to outdoor factors such as distance to water, vegetation, or surface thermal radiance. Better-insulated buildings were associated with a lower Tit [...]
Elsevier
2024