Found 2229 publications. Showing page 27 of 223:
Norwegian Meteorological Institute
2020
Assessment of transboundary pollution by toxic substances: Heavy metals and POPs
Meteorological Synthesizing Centre - East (MSC-E)
2020
Copernicus Atmosphere Monitoring Service
2020
Survey of emissions of volatile organic chemicals from handheld toys for children above 3 years
NILU has, on behalf of the Norwegian Environment Agency, performed a screening study to identify volatile organic chemicals (VOCs) emitted from handheld toys for children. The goal was to identify individual VOCs emitted from toys at room temperature and to evaluate what impact the toys may have on the composition and concentrations of VOCs in indoor air. 12-30 individual VOCs were identified in each toy and 65-143 individual VOCs were detected with a concentration higher than 1 µg/m3. VOCs emitted at high concentrations and/or with hazardous properties were cyclohexanone, aromatic VOCs (xylenes, toluene, ethylbenzene), cyclic siloxanes and 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB). A regulated hydrochlorofluorocarbon (HCFC-141 b) was also detected from 5 toys. The toys with high concentrations of cyclohexanone and cyclic siloxanes affected the composition and concentrations of VOCs in indoor air.
NILU
2020
The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Amsterdam (the Netherlands).
ClairCity Project
2020
The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Ljubljana.
ClairCity Project
2020
This report presents the ICP Materials database for the period October 2017 - November 2018. It includes environmental data from the ICP Materials trend exposure programme for 2017 - 2018, and in addition, data for temperature, relative humidity, and precipitation amount back to the end of the previous annual exposure porgramme in October/November 2015. The database consists of meteorological data (T, RH and precipitation amount) and pollution data, as gas concentrations, amounts of ions in precipitation, particle concentrations and amounts of particle deposition.
NILU
2020
2020
This report presents VOC (volatile organic compound) measurements carried out during 2018 at EMEP monitoring sites. In total, 20 sites reported VOC-data from EMEP VOC sites this year. Some of the data-sets are considered preliminary and are not included in the report.
The monitoring of NMHC (non-methane hydrocarbons) has become more diverse with time in terms of instrumentation. Starting in the early 1990s with standardized methods based on manual sampling in steel canisters with subsequent analyses at the lab, the methods now consist of a variety of instruments and measurement principles, including automated continuous monitors and manual flask samples. For oxygenated VOCs (OVOCs), sampling in DNPH-tubes with subsequent lab-analyses is still the only method in use at EMEP sites.
Within the EU infrastructure project ACTRIS-2, data quality issues related to measurements of VOC have been an important topic. Many of the institutions providing VOC-data to EMEP have participated in the ACTRIS-2 project, either as formal partners or on a voluntary basis. Participation in ACTRIS-2 has meant an extensive effort with data-checking including detailed discussions between the ACTRIS community and individual participants. There is no doubt that this extensive effort has benefited the EMEP-program and has led to improved data quality in general.
Comparison between median levels in 2018 and the medians of the previous 10-years period, revealed a similar north-to-south pattern for several species.
Changes in instrumentation, procedures, station network etc. during the last two decades make it difficult to provide a rigorous and pan-European assessment of long-term trends of the observed VOCs. In this report, we have estimated the long-term trends in NMHC over the 2000-2018 period at six sites by two independent statistical methods. These estimates indicate marked differences in the trends for the individual species. Small or non-significant trends were found for ethane over this period followed by propane which also showed fairly small reductions. On the other hand, components linked to road traffic (ethene, ethyne and benzene) showed the strongest drop in mean concentrations, up to 60-80% at some stations.
The persistent heatwave in summer 2018 in northern and central Europe lead to higher isoprene-levels than normal. The data indicate a clear relationship between isoprene and afternoon temperature at the sites. An exponential fit is seen to be well suited for the relationship between isoprene and temperature.
NILU
2020
Equinor Mongstad. Spredningsberegninger av utslipp til luft.
NILU har vurdert spredning av utslipp til luft fra Mongstad raffineri. Bakgrunnen er krav fra Miljødirektoratet i forbindelse med ny virksomhetstillatelse. Fokus i studien er på NOx, SOx og støv/partikler. Timemiddelkonsentrasjoner er beregnet ved hjelp av modellen CONCX. Regionale beregninger av konsentrasjoner og avsetning er utført med WRF-EMEP modellsystem. CONCX-beregningene viser at maksimalt beregnet timemiddel er langt lavere enn norske grenseverdier. WRF-EMEP-beregningene viser lave maksimumsverdier av NOx/NO2, SO2 og svevestøv/PM10 i nærområdet til Mongstad raffineri. Alle beregnede maksimumsverdier er lavere enn norske grenseverdier. Av utslippene fra Mongstad avsettes 12 % av nitrogen, 17 % av svovel og 18 % av PM10 innenfor det innerste gridet (105 x 105 km2). Som et tillegg er det gjort vurderinger av de prioriterte stoffene bly, kvikksølv, krom, PCB7, kadmium og arsen. Bidraget fra Mongstad raffineri er lite.
NILU
2020