Found 2229 publications. Showing page 30 of 223:
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual Report 2019.
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation
measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and
Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric
ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level.
2019 was characterized by low ozone values in April and an “ozone hole” in Southern Norway in December 2019.
NILU
2020
The main goal for the “Towards better exploitation of Satellite data for monitoring Air Quality in Norway using
downscaling techniques” (Sat4AQN) project was to evaluate the potential of spatially downscaling satellite data using a
high-resolution Chemical Transport Model (CTM) to spatial scales that are more relevant for monitoring air quality in
urban areas and regional background sites in Norway. For this demonstration project, we focused on satellite aerosol
optical density (AOD) and particulate matter (PM) estimates.
NILU
2020
The current report provides a short overview of previous years’ studies on long-term trends in O3, NO2 and PM and the role of meteorological variability for the concentration of these pollutants. The previous studies on the link between trends and meteorology has shown that these links could be estimated by a careful design of model setups using CTMs (chemical transport models). The conclusions from this work is that CTMs are certainly useful tools for explaining pollutant trends in terms of the separate impact of individual physio-chemical drivers such as emissions and meteorology although computationally demanding. The statistical GAM model that have been developed as part of the recent ETC/ACM and ETC/ATNI tasks could be considered as complementary to the use of CTMs for separating the influence of meteorological variability from other processes. The main limitation of the statistical model is that it contains no parameterisation of the real physio-chemical processes and secondly, that it relies on a local assumption, i.e. that the observed daily concentrations could be estimated based on the local meteorological data. We found clear differences in model performance both with respect to geographical area and atmospheric species. In general, the best performance was found for O3 (although not for peak levels) with gradually lower performance for NO2, PM10 and PM2.5 in that order. With respect to area, the model produced the best predictions for Central Europe (Germany, Netherlands, Belgium, France, Austria, Czech Republic) and poorer agreement with observations in southern Europe. Although the GAM model did not detect many meteorology induced long-term trends in the data, the model is well suited for separating the influence of meteorology from the other driving forces, such as emissions and boundary conditions. The GAM model thus provides robust and smooth long-term trend functions corrected for meteorology as well as the perturbations from year to year, reflecting the variability in weather conditions. One could consider to define a set of performance criteria to decide if the GAM model is applicable for a specific station and parameter.
ETC/ATNI
2020
VANDAM Final Report. June 2020.
The current document summaries the work carried out in the PRODEX project NILU VANDAM: PEA: 4000118977.
NILU
2020
Health Risk Assessment of Air Pollution in Europe. Methodology description and 2017 results
This report describes the methodology applied to assess health risks across Europe in 2016, published in the European Environmental Agency’s Air Quality in Europe – 2019 report. The methodology applied is based on the work by de Leeuw and Horálek (2016), with a few adjustments. To estimate the health risk related to air pollution, the number of premature deaths and years of life lost related to exposure to fine particulate matter, ozone and nitrogen dioxide exposure were calculated for 41 countries across Europe. The results show that the largest health risks are estimated for the countries with the largest populations. However, in relative terms, when considering e.g., years of life lost per 100 000 inhabitants, the largest relative risks are observed in central and eastern European countries, and the lowest are found for the northern and north-western parts of Europe. Additionally to the assessment, a sensitivity analysis was undertaken to comprehend how much the presumed baseline concentration levels, the concentration below which no health effects are expected, affect the estimations. In addition, a benefit analysis, assuming attainment of the PM2.5 WHO guidelines across Europe, shows a reduction over 30 % of the 2017 premature deaths and years of life lost numbers.
ETC/ATNI
2020
MetVed v.2.0. Improvement and update of the MetVed emission model for residential wood combustion
This report presents the update of the MetVed-model (Grythe et al., 2019). Among the updates are new emission factors and several new species that include climate gases (CO2, CH4 and N2O). There is now a new parameter that describes the emission altitude and a new and improved time variation. Activity data has been updated to the most recent year (2019), which also has required updates to the model and model input variables. The largest update has been the holiday cabin emission module, which is an entirely new addition. Emissions from cabins differ in several ways from residential emissions. The most notable difference is that cabins are spread over more rural areas and are more dispersed than the residential dwellings. The model differentiates alpine and coastal cabins, which is an important distinction as a high density of cabins exists along the coast and they are mainly used during summer.
NILU
2020
Environmental Contaminants in an Urban Fjord, 2019
This programme, “Environmental Contaminants in an Urban Fjord” has covered sampling and analyses of sediment and organisms in a marine food web of the Inner Oslofjord, in addition to samples of blood and eggs from herring gull. The programme also included inputs of pollutants via surface water (storm water), and effluent water and sludge from a sewage treatment plant. The bioaccumulation potential of the contaminants in the Oslo fjord food web was evaluated. The exposure to/accumulation of the contaminants was also assessed in birds. A vast number of chemical parameters have been quantified, in addition to some biological effect parameters in cod, and the report serves as a status description of the concentrations of these chemicals in different compartments of the Inner Oslofjord marine ecosystem.
Norsk institutt for vannforskning (NIVA)
2020
Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2019. Annual report.
The report summarizes the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory, situated on Svalbard in Arctic Norway, during the period 2001-2019, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2019.
NILU
2020
Emissions outsourcing in the EU. A review of potential effects on industrial pollution.
This study reviews potential evidence for emissions outsourcing in the European Union as the reduction in industrial emissions in Europe may be linked to the relocation of industry abroad (i.e. away from Europe). Emission trends of selected industrial pollutants to air (PAH, SOx, B(a)P, PCB, Pb, Zn and Ni) were established for both domestic emissions and embodied emissions in imports using available data in the EXIOBASE environmentally extended multiregional input-output system. Despite the overall decreasing trends of domestic emissions in Europe, a great variation was observed in the decrease rate of direct emissions and the increase rates in embodied emissions, due to increasing import of associated products. In addition to the analysis of data in EXIOBASE, a review of literature shows that industries’ responses to environmental regulations differ greatly based on the nature of industrial activities. Despite imposing higher costs to industries, no evidence was found in the reviewed literature that European environmental regulations caused industries to relocate. However, once industries aim to relocate outside of Europe to benefit from economic factors, such as lowering their production cost, the degree by which environmental regulations are enforced in the country of relocation can play a significant role in selecting their new location.
ETC/ATNI
2020