Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9985 publications. Showing page 80 of 400:

Publication  
Year  
Category

Car Tire Crumb Rubber: Does Leaching Produce a Toxic Chemical Cocktail in Coastal Marine Systems?

Halsband-Lenk, Claudia; Sørensen, Lisbet; Booth, Andy; Herzke, Dorte

Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied to synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g., pigments, oils, resins), ELTs contain a range of other organic compound and heavy metal additives. While previous environmental impact studies on CRG have focused on terrestrial soil and freshwater ecosystems, many sites applying CRG in Norway are coastal. The current study investigated the organic chemical and metal additive content of ‘pristine’ and ‘weathered’ CRG and their seawater leachates, as well as uptake and effects of leachate exposure using marine copepods (Acartia and Calanus sp.). A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g., bisphenols). ICP-MS analysis revealed g kg–1 quantities of Zn and mg kg–1 quantities of Fe, Mn, Cu, Co, Cr, Pb, and Ni in the CRG. A cocktail of organic additives and metals readily leached from the CRG into seawater, with the most abundant leachate components being benzothiazole and Zn, Fe, Co (metals), as well as detectable levels of PAHs and phenolic compounds. Concentrations of individual components varied with CRG source material and CRG to seawater ratio, but benzothiazole and Zn were typically the organic and metal components present at the highest concentrations in the leachates. While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30-day period. Marine copepods exposed to high CRG leachate concentrations exhibited high mortalities within 48 h. The smaller lipid-poor Acartia had a higher sensitivity to leachates than the larger lipid-rich Calanus, indicating species-specific differences in vulnerability to leachates. The effect on survival was alleviated at lower leachate concentrations, indicating a dose-response relationship. Benzothiazole and its derivatives appear to be of concern owing to their proven toxicity, while bisphenols are also known to be toxic and were enriched in the leachates relative to the other compounds in the CRG.

2020

The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions

Hamer, Paul David; Walker, Sam-Erik; Santos, Gabriela Sousa; Vogt, Matthias; Vo, Dam Thanh; Lopez-Aparicio, Susana; Schneider, Philipp; Ramacher, Martin O. P.; Karl, Matthias

This paper describes the Eulerian urban dispersion model EPISODE. EPISODE was developed to address a need for an urban air quality model in support of policy, planning, and air quality management in the Nordic, specifically Norwegian, setting. It can be used for the calculation of a variety of airborne pollutant concentrations, but we focus here on the implementation and application of the model for NO2 pollution. EPISODE consists of an Eulerian 3D grid model with embedded sub-grid dispersion models (e.g. a Gaussian plume model) for dispersion of pollution from line (i.e. roads) and point sources (e.g. chimney stacks). It considers the atmospheric processes advection, diffusion, and an NO2 photochemistry represented using the photostationary steady-state approximation for NO2. EPISODE calculates hourly air concentrations representative of the grids and at receptor points. The latter allow EPISODE to estimate concentrations representative of the levels experienced by the population and to estimate their exposure. This methodological framework makes it suitable for simulating NO2 concentrations at fine-scale resolution (<100 m) in Nordic environments. The model can be run in an offline nested mode using output concentrations from a global or regional chemical transport model and forced by meteorology from an external numerical weather prediction model; it also can be driven by meteorological observations. We give a full description of the overall model function and its individual components. We then present a case study for six Norwegian cities whereby we simulate NO2 pollution for the entire year of 2015. The model is evaluated against in situ observations for the entire year and for specific episodes of enhanced pollution during winter. We evaluate the model performance using the FAIRMODE DELTA Tool that utilises traditional statistical metrics, e.g. root mean square error (RMSE), Pearson correlation R, and bias, along with some specialised tests for air quality model evaluation. We find that EPISODE attains the DELTA Tool model quality objective in all of the stations we evaluate against. Further, the other statistical evaluations show adequate model performance but that the model scores greatly improved correlations during winter and autumn compared to the summer. We attribute this to the use of the photostationary steady-state scheme for NO2, which should perform best in the absence of local ozone photochemical production. Oslo does not comply with the NO2 annual limit set in the 2008/50/EC directive (AQD). NO2 pollution episodes with the highest NO2 concentrations, which lead to the occurrence of exceedances of the AQD hourly limit for NO2, occur primarily in the winter and autumn in Oslo, so this strongly supports the use of EPISODE for application to these wintertime events. Overall, we conclude that the model is suitable for an assessment of annual mean NO2 concentrations and also for the study of hourly NO2 concentrations in the Nordic winter and autumn environment. Further, in this work we conclude that it is suitable for a range of policy applications specific to NO2 that include pollution episode analysis, evaluation of seasonal statistics, policy and planning support, and air quality management. Lastly, we identify a series of model developments specifically designed to address the limitations of the current model assumptions. Part 2 of this two-part paper discusses the CityChem extension to EPISODE, which includes a number of implementations such as a more comprehensive photochemical scheme suitable for describing more chemical species and a more diverse range of photochemical environments, as well as a more advanced treatment of the sub-grid dispersion.

2020

Anne-Cathrine (42) måler lufta du puster inn

Nilsen, Anne-Cathrine (interview subject); HÅKONSEN, KATHARINA DALE (journalist)

2020

Investigation of the wet removal rate of black carbon in East Asia: validation of a below- And in-cloud wet removal scheme in FLEXible PARTicle (FLEXPART) model v10.4

Choi, Yongjoo; Kanaya, Yugo; Takigawa, Masayuki; Zhu, Chunmao; Park, Seung-Myung; Matsuki, Atsushi; Sadanaga, Yasuhiro; Kim, Sang-Woo; Pan, Xiaole; Pisso, Ignacio

Understanding the global distribution of atmospheric black carbon (BC) is essential for unveiling its climatic effect. However, there are still large uncertainties regarding the simulation of BC transport due to inadequate information about the removal process. We accessed the wet removal rate of BC in East Asia based on long-term measurements over the 2010–2016 period at three representative background sites (Baengnyeong and Gosan in South Korea and Noto in Japan). The average wet removal rate, represented by transport efficiency (TE), i.e., the fraction of undeposited BC particles during transport, was estimated to be 0.73 in East Asia from 2010 to 2016. According to the relationship between accumulated precipitation along trajectory and TE, the wet removal efficiency was lower in East and North China but higher in South Korea and Japan, implying the importance of the aging process and frequency of exposure to below- and in-cloud scavenging conditions during air mass transport. Moreover, the wet scavenging in winter and summer showed the highest and lowest efficiency, respectively, although the lowest removal efficiency in summer was primarily associated with a reduced BC aging process because the in-cloud scavenging condition was dominant. The average half-life and e-folding lifetime of BC were 2.8 and 7.1 d, respectively, which is similar to previous studies, but those values differed according to the geographical location and meteorological conditions of each site. Next, by comparing TE from the FLEXible PARTicle (FLEXPART) Lagrangian transport model (version 10.4), we diagnosed the scavenging coefficients (s−1) of the below- and in-cloud scavenging scheme implemented in FLEXPART. The overall median TE from FLEXPART (0.91) was overestimated compared to the measured value, implying the underestimation of wet scavenging coefficients in the model simulation. The median of the measured below-cloud scavenging coefficient showed a lower value than that calculated according to FLEXPART scheme by a factor of 1.7. On the other hand, the overall median of the calculated in-cloud scavenging coefficients from the FLEXPART scheme was highly underestimated by 1 order of magnitude, compared to the measured value. From an analysis of artificial neural networks, the convective available potential energy, which is well known as an indicator of vertical instability, should be considered in the in-cloud scavenging process to improve the representative regional difference in BC wet scavenging over East Asia. For the first time, this study suggests an effective and straightforward evaluation method for wet scavenging schemes (both below and in cloud), by introducing TE along with excluding effects from the inaccurate emission inventories.

2020

Multi-decadal surface ozone trends at globally distributed remote locations

Cooper, Owen R.; Schultz, Martin G.; Schroeder, Sabine; Chang, Kai-Lan; Gaudel, Audrey; Benitez, Gerardo Carbajal; Cuevas, Emilio; Frölich, Marina; Galbally, Ian E.; Molloy, Suzie; Kubistin, Dagmar; Lu, Xiao; McClure-Begley, Audra; Nédélec, Philippe; O'Brien, Jason; Oltmans, Samuel J.; Petropavlovskikh, Irina; Ries, Ludwig; Senik, Irina; Sjöberg, Karin; Solberg, Sverre; Spain, Gerard T.; Spangl, Wolfgang; Steinbacher, Martin; Tarasick, David; Thouret, Valérie; Xu, Xiaobin

Extracting globally representative trend information from lower tropospheric ozone observations is extremely difficult due to the highly variable distribution and interannual variability of ozone, and the ongoing shift of ozone precursor emissions from high latitudes to low latitudes. Here we report surface ozone trends at 27 globally distributed remote locations (20 in the Northern Hemisphere, 7 in the Southern Hemisphere), focusing on continuous time series that extend from the present back to at least 1995. While these sites are only representative of less than 25% of the global surface area, this analysis provides a range of regional long-term ozone trends for the evaluation of global chemistry-climate models. Trends are based on monthly mean ozone anomalies, and all sites have at least 20 years of data, which improves the likelihood that a robust trend value is due to changes in ozone precursor emissions and/or forced climate change rather than naturally occurring climate variability. Since 1995, the Northern Hemisphere sites are nearly evenly split between positive and negative ozone trends, while 5 of 7 Southern Hemisphere sites have positive trends. Positive trends are in the range of 0.5-2 ppbv decade-1, with ozone increasing at Mauna Loa by roughly 50% since the late 1950s. Two high elevation Alpine sites, discussed by previous assessments, exhibit decreasing ozone trends in contrast to the positive trend observed by IAGOS commercial aircraft in the European lower free-troposphere. The Alpine sites frequently sample polluted European boundary layer air, especially in summer, and can only be representative of lower free tropospheric ozone if the data are carefully filtered to avoid boundary layer air. The highly variable ozone trends at these 27 surface sites are not necessarily indicative of free tropospheric trends, which have been overwhelmingly positive since the mid-1990s, as shown by recent studies of ozonesonde and aircraft observations.

2020

Wind estimates in the mesosphere - lower thermosphere retrieved from infrasound data

Vorobeva, Ekaterina; Näsholm, Sven Peter; Espy, Patrick Joseph; Orsolini, Yvan; Hibbins, Robert

2020

Effects of the 11-year Solar Cycle including Medium-Energy Electron Precipitation in WACCM decadal climate predictions

Guttu, Sigmund; Orsolini, Yvan; Stordal, Frode; Otterå, Odd Helge; Toniazzo, Thomas; Verronen, Pekka T.

2020

Semidiurnal tidal signatures in microbarom infrasound array measurements

Näsholm, Sven Peter; Vorobeva, Ekaterina; Pichon, Alexis Le; Orsolini, Yvan; Turquet, Antoine Leo; Hibbins, Robert; Espy, Patrick Joseph; Carlo, Marine De; Assink, Jelle D.; Rodriguez, Ismael Vera

2020

Potential mechanisms for New Particle Formation and growth from aerosol mixing state and volatility observations

Eleftheriadis, Konstantinos; Gini, Maria; Mendes, Luis; Ondráček, Jakub; Krejci, Radovan; Tørseth, Kjetil

2020

Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2019

Timmermann, Volkmar; Andreassen, Kjell; Beachell, Andreas Myki; Børja, Isabella; Brurberg, May Bente; Clarke, Nicholas; Halvorsen, Rune; Hylen, Gro; Jepsen, Jane Uhd; Perminow, Juliana; Solberg, Sverre; Solheim, Halvor; Talgø, Venche; Tollefsrud, Mari Mette; Vindstad, Ole Petter Laksforsmo; Økland, Bjørn; Økland, Tonje; Aas, Wenche

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep.
Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres
resultater fra skogskadeovervåkingen i Norge i 2019 og trender over tid.....

NIBIO

2020

Funn av mikroplast fra biler i Arktis overrasker forskere

Grythe, Henrik; Herzke, Dorte (interview subjects); Aarsæther, Aslaug (journalist)

2020

Atmospheric transport is a major pathway of microplastics to remote regions

Evangeliou, Nikolaos; Grythe, H.; Klimont, Zbigniew; Heyes, Chris; Eckhardt, Sabine; Lopez-Aparicio, S.; Stohl, Andreas

In recent years, marine, freshwater and terrestrial pollution with microplastics has been discussed extensively, whereas atmospheric microplastic transport has been largely overlooked. Here, we present global simulations of atmospheric transport of microplastic particles produced by road traffic (TWPs – tire wear particles and BWPs – brake wear particles), a major source that can be quantified relatively well. We find a high transport efficiencies of these particles to remote regions. About 34% of the emitted coarse TWPs and 30% of the emitted coarse BWPs (100 kt yr−1 and 40 kt yr−1 respectively) were deposited in the World Ocean. These amounts are of similar magnitude as the total estimated direct and riverine transport of TWPs and fibres to the ocean (64 kt yr−1). We suggest that the Arctic may be a particularly sensitive receptor region, where the light-absorbing properties of TWPs and BWPs may also cause accelerated warming and melting of the cryosphere.

2020

Monitoring of environmental contaminants in freshwater ecosystems 2019 – Occurrence and biomagnification

Jartun, Morten; Økelsrud, Asle; Rundberget, Thomas; Bæk, Kine; Enge, Ellen Katrin; Halse, Anne Karine; Götsch, Arntraut; Harju, Mikael; Johansen, Ingar

This program, «Monitoring of environmental contaminants in freshwater ecosystems and single species in large Norwegian lakes”, has covered sampling and determination of environmental contaminants by analyses of organisms in an aquatic, pelagic food web of Lake Mjøsa, and in the top predator in Lake Femunden. Samples of different trophic levels, from epipelagic zooplankton to the top predator brown trout, were collected during the late stages of the growth season in 2019. In this report, the status of contamination in the food web, trends and biomagnification potential of various environmental contaminants is discussed.

Norsk institutt for vannforskning (NIVA)

2020

Mapping urban air quality using low-cost sensor networks

Schneider, Philipp; Castell, Nuria; Bartonova, Alena

2020

Fine aerosol chemical composition and sources in Europe using high time resolution instrumentation

Minguillón, M. C.; Prevot, A.S.H.; Riffault, Véronique; Favez, Olivier; Gilardoni, S.; Mocnik, G.; Platt, Stephen Matthew; Green, D; Ovadnevaite, Jurgita; Kasper-Giebl, Anne; Alastuey, A.; Marmureanu, Luminita; Eriksson, A.; Sokolovic, D.; Team, The COLOSSAL

2020

Cyclic and Linear Siloxanes in Indoor Environments: Occurrence and Human Exposure

Cincinelli, Alessandra; Martellini, Tania; Scopetani, Costanza; Guerranti, C.; Katsoyiannis, Athanasios A.

2020

Impact of 3D cloud structures on tropospheric NO2 column measurements from UV-VIS sounders

Yu, Huan; Kylling, Arve; Emde, Claudia; Mayer, Bernhard; Stebel, Kerstin; Roozendael, Michel Van; Veilhelmann, Ben

2020

Measurements of non-methane hydrocarbons (NMHC) in Abu Dhabi. Final assessment report.

Solberg, Sverre; Hak, Claudia; Schmidbauer, Norbert; Gopinath, Vinod; Bartonova, Alena

NILU

2020

Hvordan har luftkvalitet i Europa endret seg under lockdown og hvorfor?

Guerreiro, Cristina; Solberg, Sverre; Walker, Sam-Erik; Schneider, Philipp

2020

Review on the methodology supporting the health impact assessment by the European Environment Agency

Soares, Joana; Gsella, Artur; Horálek, Jan; Guerreiro, Cristina; Ortiz, Alberto González

2020

New particle formation characteristics in the Arctic (Zeppelin, Svalbard)

Lee, Haebum; Lee, KwangYul; Krejci, Radovan; Aas, Wenche; Park, Jiyeon; Park, Ki-Tae; Lee, Bang-Yong; Yoon, Young-Jun; Park, Kihong

2020

Forslag til norsk overvåkingsnettverk for å oppfylle NEC‐direktivets krav om å overvåke effekter av luftforurensing

Garmo, Øyvind Aaberg; Bakkestuen, Vegar; Solberg, Sverre; Timmermann, Volkmar; Simpson, David; Vollsnes, Ane Victoria; Aarrestad, Per Arild; Ranneklev, Sissel Brit

Norge har et eksisterende overvåkingsnettverk for å måle effekter av luftforurensninger som forsuring, overgjødsling og
ozoneksponering i økosystemer. Ved eventuell implementering av nytt NEC‐direktiv «takdirektiv» (2016/2284/EU) må Norge
rapportere inn overvåkingsnettverk og resultater fra overvåking av effekter av luftforurensninger i økosystemer.
I denne rapporten er dagens overvåkingsnettverk vurdert med hensyn til de krav som stilles i nytt NEC‐direktiv. Resultater viste
at for innsjøer og elver er dagens overvåkingsnettverk relatert til forsuring tilfredsstillende. For overgjødsling av skog, skogsjord
og terrestrisk natur er det behov for oppgraderinger av overvåkingsnettverket. I forhold til ozonskader i vegetasjon er det behov
for oppgraderinger av dagens overvåkingsnettverk.
Det vil påløpe kostnader for opprettelse av nye overvåkingsstasjoner og oppgraderinger av dagens overvåkingsnettverk.
Estimerte kostnader for å dekke mangler i eksisterende overvåkingsnettverk er angitt i rapporten.

Norsk institutt for vannforskning (NIVA)

2020

Publication
Year
Category