Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9985 publications. Showing page 85 of 400:

Publication  
Year  
Category

Regionalized environmental impacts of construction machinery

Ebrahimi, Babak; Wallbaum, Holger; Jakobsen, Pål Drevland; Booto, Gaylord Kabongo

PURPOSE:
This study aims to establish a regionalized environmental impact assessment of construction machinery equipped with diesel engines certified by the European emission standard Stage V, and operated in cold climatic zones in Europe.
METHOD:
The study quantifies potential environmental impacts associated with construction machinery over the entire lifecycle, from extraction of materials to the end-of-life. For the operation phase, a meso-level emission accounting method is applied to quantify tailpipe emissions for certain subcategories of construction machinery. This is achieved by determining the operational efficiency of each machine in terms of effective hours. The quantified emission data are then adjusted based on engine deterioration models to estimate the rate of increase in emissions throughout the lifetime of each machine. Finally, the CML impact assessment method is applied to inventory data to quantify potential environmental impacts.
RESULTS:
The study shows that tailpipe emissions, which largely depend on an engine’s fuel consumption, had the largest contribution to environmental impacts in most impact categories. At the same time, there was a positive correlation between the operation weight and the impacts of the machinery. Also, machinery with similar operation weight had relatively similar impact patterns due to similar driving factors and dependencies. In addition, network, sensitivity, and uncertainty analyses were performed to quantify the source of impacts and validate the robustness of the study. Results of the sensitivity analysis showed that the responsiveness of the studied systems is very sensitive to changes in the amount of fuel consumption. In addition, the uncertainty results showed that the domain of uncertainty increased as the operation weight subcategory of machinery increased.
CONCLUSION:
This study extends previous work on the life cycle assessment (LCA) of construction machinery, and the methodology developed provides a basis for future extension and improvement in this field. The use of effective hours as the unit of operational efficiency helps to resolve uncertainties linked to lifetime and annual operation hours. Also, the obtained results can be of use for decision support and for assessing the impacts of transition from fossil fuels to alternative fuel types.

2020

Koronatiltak fører til kraftig reduksjon i luftforurensningen

Solbakken, Christine Forsetlund; Grythe, Henrik (interview subjects); Eliassen, Håkon (journalist)

2020

Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward. Report of the working group from the 7th International Workshop on Genotoxicity Testing (IWGT)

Pfuhler, Stefan; Benthem, Jan van; Curren, Rodger; Doak, Shareen H.; Dusinska, Maria; Hayashi, Makoto; Heflich, Robert H.; Kidd, Darren; Kirkland, David; Luan, Yang; Ouedraogo, Gladys; Reisinger, Kerstin; Sofuni, Toshio; Acker, Frederique van; Yang, Ying; Corvi, Raffaella

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a “Use of 3D Tissues in Genotoxicity Testing” working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.

2020

NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment

Afantitis, Antreas; Melagraki, Georgia; Isigonis, Panagiotis; Tsoumanis, Andreas; Varsou, Dimitra Danai; Valsami-Jones, Eugenia; Papadiamantis, Anastasios; Ellis, Laura-Jayne; Sarimveis, Haralambos; Doganis, Philip; Karatzas, Pantelis; Tsiros, Periklis; Liampa, Irene; Lobaskin, Vladimir; Greco, Dario; Serra, Angela; Kinaret, Pia Anneli Sofia; Saarimaki, Laura Aliisa; Grafström, Roland; Kohonen, Pekka; Nymark, Penny; Willighagen, Egon; Puzyn, Tomasz; Rybinska-Fryca, Anna; Lyubartsev, Alexander; Jensen, Keld Alstrup; Brandenburg, Gerit; Lofts, Stephen; Svendsen, Claus; Harrison, Samuel; Maier, Dieter; Tamm, Kaido; Jänes, Jaak; Sikk, Lauri; Dusinska, Maria; Longhin, Eleonora Marte; Rundén-Pran, Elise; Mariussen, Espen; Yamani, Naouale El; Unger, Wolfgang; Radnik, Jörg; Tropsha, Alexander; Cohen, Yoram; Leszcynski, Jerzy; Hendren, Christine Ogilvie; Wiesner, Mark; Winkler, David; Suzuki, Noriyuki; Yoon, Tae Hyun; Choi, Jang-Sik; Sanabria, Natasha; Gulumian, Mary; Lynch, Iseult

Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization.

2020

An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta

Grøntoft, Terje; Cassar, JoAnn

Malta is known for its limestone megalithic temples of which many are inscribed on the UNESCO World Heritage List. A variation of this limestone was historically, and until very few years ago, a primary building material in Malta. The temples are subject to various environmental influences which until recently have led to several collapses due in part to serious stone surface and infill loss. As a protection measure, open-sided shelters have been built over three of these temples. This work assesses the degrading influence of air pollution (nitrogen dioxide, ozone, particle matter, sulfur dioxide, and acidity in rain) on the temples, in combination and comparison with the influence of other environmental factors (relative humidity, temperature, precipitation, moisture, sea salt, wind) and in this respect evaluates the potential protective effect of the shelters. The variation in air pollution weathering of limestone exposed outdoor in Malta was calculated by exposure–response functions from the ICP-materials programme and compared with measured values, and its contribution to the deterioration of the temples was evaluated. The difference between urban and rural locations in Malta, in the first year of atmospheric chemical weathering of limestone due to air pollution, was found to be about one micrometer loss of stone surface. This is probably less than the annual variations due to the influence of natural climatic factors, and small compared to the present annual variations in continental Europe. The deposition of sea salt and presence of salts on and in the limestone megaliths and changes in salt-crystallization events due to relative humidity fluctuations, inside and outside the shelters, will account for more of the variations in the first year of weathering of Globigerina limestone than variations in air pollution. The deterioration will also be related to temperature (including condensation events), wind parameters and rainfall, as well as ground water replenished from areas beyond the shelter.

2020

Satellite validation strategy assessments based on the AROMAT campaigns

Merlaud, Alexis; Belegante, Livio; Constantin, Daniel-Eduard; Hoed, Mirjam Den; Meier, Andreas Carlos; Allaart, Marc; Ardelean, Magdalena; Arseni, Maxim; Bösch, Tim; Brenot, Hugues; Calcan, Andreea; Dekemper, Emmanuel; Donner, Sebastian; Dörner, Steffen; Dragomir, Mariana Carmelia Balanica; Georgescu, Lucian; Nemuc, Anca; Nicolae, Doina; Pinardi, Gaia; Richter, Andreas; Rosu, Adrian; Ruhtz, Thomas; Schönhardt, Anja; Schuettemeyer, Dirk; Shaiganfar, Reza; Stebel, Kerstin; Tack, Frederik; Vajaiac, Sorin Nicolae; Vasilescu, Jeni; Vanhamel, Jurgen; Wagner, Thomas; Roozendael, Michel Van

The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and large power plants in the Jiu Valley. The main objectives of the campaigns were to test recently developed airborne observation systems dedicated to air quality studies and to verify their applicability for the validation of space-borne atmospheric missions such as the TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We present the AROMAT campaigns from the perspective of findings related to the validation of tropospheric NO2, SO2, and H2CO. We also quantify the emissions of NOx and SO2 at both measurement sites.

We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are well suited for satellite validation in principle. The signal-to-noise ratio of the airborne NO2 measurements is an order of magnitude higher than its space-borne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. However, we show that the temporal variation of the NO2 VCDs during a flight might be a significant source of comparison error. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37 σ (2.6×1016 molec. cm−2) and 29 σ (2×1016 molec. cm−2) for Bucharest and the Jiu Valley, respectively. For both areas, we simulate validation exercises applied to the TROPOMI tropospheric NO2 product. These simulations indicate that a comparison error budget closely matching the TROPOMI optimal target accuracy of 25 % can be obtained by adding NO2 and aerosol profile information to the airborne mapping observations, which constrains the investigated accuracy to within 28 %. In addition to NO2, our study also addresses the measurements of SO2 emissions from power plants in the Jiu Valley and an urban hotspot of H2CO in the centre of Bucharest. For these two species, we conclude that the best validation strategy would consist of deploying ground-based measurement systems at well-identified locations.

2020

Environmental Contaminants in an Urban Fjord, 2019

Ruus, Anders; Bæk, Kine; Rundberget, Thomas; Allan, Ian; Beylich, Bjørnar; Vogelsang, Christian; Schlabach, Martin; Götsch, Arntraut; Borgå, Katrine; Helberg, Morten

This programme, “Environmental Contaminants in an Urban Fjord” has covered sampling and analyses of sediment and organisms in a marine food web of the Inner Oslofjord, in addition to samples of blood and eggs from herring gull. The programme also included inputs of pollutants via surface water (storm water), and effluent water and sludge from a sewage treatment plant. The bioaccumulation potential of the contaminants in the Oslo fjord food web was evaluated. The exposure to/accumulation of the contaminants was also assessed in birds. A vast number of chemical parameters have been quantified, in addition to some biological effect parameters in cod, and the report serves as a status description of the concentrations of these chemicals in different compartments of the Inner Oslofjord marine ecosystem.

Norsk institutt for vannforskning (NIVA)

2020

Støtte til nye vedovner garanterer ikke for renere luft

Grythe, Henrik; Lopez-Aparicio, Susana (interview subjects); Fossen, Erik (journalist)

2020

A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing

Sayer, Andrew M.; Goaverts, Yves; Kolmonen, Pekka; Lipponen, Antti; Luffarelli, Marta; Mielonen, Tero; Patadia, Falguni; Popp, Thomas; Povey, Adam C.; Stebel, Kerstin; Witek, Marcin L.

Recent years have seen the increasing inclusion of per-retrieval prognostic (predictive) uncertainty estimates within satellite aerosol optical depth (AOD) data sets, providing users with quantitative tools to assist in optimal use of these data. Prognostic estimates contrast with diagnostic (i.e. relative to some external truth) ones, which are typically obtained using sensitivity and/or validation analyses. Up to now, however, the quality of these uncertainty estimates has not been routinely assessed. This study presents a review of existing prognostic and diagnostic approaches for quantifying uncertainty in satellite AOD retrievals, and presents a general framework to evaluate them, based on the expected statistical properties of ensembles of estimated uncertainties and actual retrieval errors. It is hoped that this framework will be adopted as a complement to existing AOD validation exercises; it is not restricted to AOD and can in principle be applied to other quantities for which a reference validation data set is available. This framework is then applied to assess the uncertainties provided by several satellite data sets (seven over land, five over water), which draw on methods from the empirical to sensitivity analyses to formal error propagation, at 12 Aerosol Robotic Network (AERONET) sites. The AERONET sites are divided into those where it is expected that the techniques will perform well, and those for which some complexity about the site may provide a more severe test. Overall all techniques show some skill in that larger estimated uncertainties are generally associated with larger observed errors, although they are sometimes poorly calibrated (i.e. too small/large in magnitude). No technique uniformly performs best. For powerful formal uncertainty propagation approaches such as Optimal Estimation the results illustrate some of the difficulties in appropriate population of the covariance matrices required by the technique. When the data sets are confronted by a situation strongly counter to the retrieval forward model (e.g. potential mixed land/water surfaces, or aerosol optical properties outside of the family of assumptions), some algorithms fail to provide a retrieval, while others do but with a quantitatively unreliable uncertainty estimate. The discussion suggests paths forward for refinement of these techniques.

2020

Networks of air quality sensors and their use for high-resolution mapping of urban air quality

Schneider, Philipp; Castell, Nuria; Hamer, Paul David; Walker, Sam-Erik; Bartonova, Alena

2020

Volatile Methyl Siloxanes in Polar Regions

Krogseth, Ingjerd Sunde; Warner, Nicholas Alexander

2020

Contaminants, prolactin and parental care in an Arctic seabird: Contrasted associations of perfluoroalkyl substances and organochlorine compounds with egg-turning behavior

Blévin, Pierre; Shaffer, Scott A.; Bustamante, Paco; Angelier, Frédéric; Picard, Baptiste; Herzke, Dorte; Moe, Børge; Gabrielsen, Geir W.; Bustnes, Jan Ove; Chastel, Olivier

2020

Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau

Li, Fei; Wan, Xin; Wang, Huijun; Orsolini, Yvan J.; Cong, Zhiyuan; Gao, Yongqi; Kang, Shichang

The Tibetan Plateau (TP) has recently been polluted by anthropogenic emissions transported from South Asia, but the mechanisms conducive to this aerosol delivery are poorly understood. Here we show that winter loss of Arctic sea ice over the subpolar North Atlantic boosts aerosol transport toward the TP in April, when the aerosol loading is at its climatological maximum and preceding the Indian summer monsoon onset. Low sea ice in February weakens the polar jet, causing decreased Ural snowpack via reduced transport of warm, moist oceanic air into the high-latitude Eurasian interior. This diminished snowpack persists through April, reinforcing the Ural pressure ridge and East Asian trough, segments of a quasi-stationary Rossby wave train extending across Eurasia. These conditions facilitate an enhanced subtropical westerly jet at the southern edge of the TP, invigorating upslope winds that combine with mesoscale updrafts to waft emissions over the Himalayas onto the TP.

2020

The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

Ramonet, Michel; Ciais, Philippe; Apadula, F.; Bartyzel, Jakub; Bastos, Ana; Bergamaschi, Peter; Blanc, P. E.; Brunner, D; Torchiarolo, L. Caracciolo di; Calzolari, F.; Chen, H.; Chmura, L.; Colomb, A.; Conil, S.; Cristofanelli, P.; Cuevas, E.; Curcoll, R.; Delmotte, M.; Sarra, A. di; Emmenegger, L.; Forster, G.; Frumau, A.; Gerbig, C.; Gheusi, F; Hammer, S.; Haszpra, L.; Hatakka, J.; Hazan, L.; Heliasz, M.; Henne, S.; Hensen, A.; Hermansen, Ove; Keronen, P.; Kivi, R.; Kominkova, K.; Kubistin, D.; Laurent, O.; Laurila, T; Lavric, J. V.; Lehner, I.; Lehtinen, K. E. J.; Leskinen, A.; Leuenberger, M.; Levin, I.; Lindauer, M.; Lopez, M.; Myhre, Cathrine Lund; Mammarella, I; Manca, G; Manning, A; Marek, M. V.; Marklund, P.; Martin, D.; Meinhardt, F; Mihalopoulos, N.; Mölder, M.; Morguí, J.A.; Necki, J.; O'Doherty, S.; O'Dowd, C; Ottosson, M.; Philippon, N.; Piacentino, S.; Pichon, J.M.; Plass-Duelmer, C.; Resovsky, A.; Rivier, L; Rodo, X; Sha, M. K.; Scheeren, H. A.; Sferlazzo, D.; Spain, T. G.; Stanley, K. M.; Steinbacher, M.; Trisolino, P.; Vermeulen, A.; Vitkova, G.; Weyrauch, D.; Xueref-Remy, I.; Yala, K.; Kwok, C. Yvwer

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018.

This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.

2020

Thermodynamic parameters at bio-nano interface and nanomaterial toxicity: A case study on BSA interaction with ZnO, SiO2 and TiO2

Precupas, Aurica; Gheorghe, Daniela; Botea-Petcu, Alina; Leonties, Anca Ruxandra; Sandu, Romica; Popa, Vlad Tudor; Mariussen, Espen; Yamani, Naouale El; Rundén-Pran, Elise; Dumit, Veronica; Xue, Ying; Cimpan, Mihaela Roxana; Dusinska, Maria; Haase, Andrea; Tanasescu, Speranta

Understanding nanomaterial (NM)–protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM–protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA–NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.

2020

Impact of solar irradiance and geomagnetic activity on polar NOx, ozone and temperature in WACCM simulations

Tartaglione, N.; Toniazzo, T.; Orsolini, Y.; Otterå, O.H.

The response of the atmosphere to solar irradiance and geomagnetic activity is analyzed in experiments with the Whole Atmosphere Community Climate Model (WACCM) under idealized forcings. Four experiments are carried out combining high (H) and low (L) solar radiative forcing with high (7) and low (3) geomagnetic activity: H7 (with high radiative forcing and high geomagnetic activity), H3, (high/low), L7 (low/high), and L3 (low/low). The comparison between these experiment is used to assess the effects of solar radiative forcing and geomagnetic activity mainly on the stratosphere. A two-step Monte Carlo-based statistical test, which defines an impact score, is used to assess statistically significant impacts on regional scales, on pressure levels, for a few key model variables, like NOx, ozone, and temperature.

Under low solar forcing (L7/L3), a statistically significant relationship between geomagnetic activity and NOx is found in both hemispheres and for all seasons. An equally strong relationship is lacking for ozone and temperature when analyzing these fields on isobaric levels. A statistically significant impact on stratospheric ozone is only seen in austral winter and spring. However, vertical cross sections show statistically significant impact on temperature and ozone mainly in the southern hemisphere (SH) during austral winter and the following spring.

Significant and persistent signals in both SH NOx and ozone concentrations are only produced when the effect of high solar forcing is added to high geomagnetic activity (H7). In this case, statistically significant differences are also found for mesospheric temperatures, ozone and NOx. This latter result appears also under low geomagnetic activity as a result of solar forcing alone, suggesting that solar irradiance significantly affects NOx, ozone and stratospheric temperatures and, in some seasons, even tropospheric temperature.

In summary, geomagnetic activity primarily affects NOx and ozone concentrations in the SH. Solar maximum conditions can reduce the amount of NOx in the stratosphere because of higher ozone production. Thus, we conclude that correlations between changes in solar irradiance and geomagnetic activity are important with respect to their effects on the atmosphere. In particular, geomagnetic activity can modulate atmospheric ozone concentrations and other associated stratospheric and tropospheric variables under conditions of high solar activity.

2020

Tre uomtvistelige fakta

Furevik, Tore; Halvorsen, Kristin; Skålin, Roar; Johnny, Johannessen; Nygaard, Kari; Støle, Elisabeth Maråk; Myklebust, Norunn Sæther; Bentzen, Greta; Misund, Ole Arve; Borg, Anne; Gjørv, Alexandra Bech; Olsen, Dag Rune; Stølen, Svein

2020

Structure, process, and mechanism

Sodemann, Harald; Wernli, Heini; Knippertz, Peter; Cordeira, Jason M.; Dominguez, Francina; Guan, Bin; Hu, Huancui; Ralph, F. Martin; Stohl, Andreas

2020

Embedding Ethical Impact Assessment in Nanosafety Decision Support

Malsch, Ineke; Isigonis, Panagiotis; Dusinska, Maria; Bouman, Evert

Nanotechnology is a key enabling technology, which is developing fast and influences many aspects of life. Nanomaterials are already included in a broad range of products and industrial sectors. Nanosafety issues are still a matter of concern for policy makers and stakeholders, but currently, there is no platform where all stakeholders can meet and discuss these issues. A comprehensive overview of all the issues in one single dashboard presenting the output of a decision support system is also lacking. This article outlines a strategy for developing one innovative part of a modular decision support system, designed to support the work of a new Risk Governance Council (RGC) for nanomaterials which will be established through the combined efforts of the GOV4NANO, NANORIGO, and RiskGONE H2020 projects. This new module will consist of guidelines for Ethical Impact Assessment (EIA) for nanomaterials and nanoenabled products. This article offers recommendations for adapting the European Committee for Standardization (CEN) prestandard on Ethical Impact Assessment CWA (CEN Workshop Agreement) 17145‐2:2017 (E), to fit into the more‐encompassing decision support system for risk governance of nanomaterials within the RiskGONE project.

2020

Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2019. Annual report.

Myhre, Cathrine Lund; Svendby, Tove Marit; Hermansen, Ove; Lunder, Chris Rene; Platt, Stephen Matthew; Fiebig, Markus; Fjæraa, Ann Mari; Hansen, Georg H.; Schmidbauer, Norbert; Krognes, Terje

The report summarizes the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory, situated on Svalbard in Arctic Norway, during the period 2001-2019, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2019.

NILU

2020

Validation of satellite-constrained ammonia using a CTM and ground and satellite measurements

Evangeliou, Nikolaos; Balkanski, Yves; Eckhardt, Sabine; Hauglustaine, Didier; Cozic, Anne; Stohl, Andreas

2020

Information gain in environmental monitoring through bioindication and biomonitoring methods ("B & B technologies") and phytoremediation processes-with special reference to the Biological System of Chemical Elements (BSCE) under specific consideration of Lithium

Markert, Bernd; Abdallah, Naglaa; Aksoy, Ahmed; Ammari, Tarek; Zechmeister, Harald; Azaizeh, Hassan; Badran, Adnan; Baltrenaite, Edita; Baydoun, Elias; Bernstein, Nirit; Canha, Nuno; Chudzinska, Ewa; Delakowitz, Bernd; Diatta, Jean; Djingova, Rumy; El-Sheik, Omer; Fargasova, Agata; Figueiredo, Ana Maria; Fränzle, Stefan; Frontesyeva, Marina; Ghafari, Zahra; Golan, Avi; Gorelova, Svetlana; Greger, Maria; Harmens, Harry; Hillman, John; Hooda, Peter; Jayasekera, Ranjit; Kidd, Petra; Kim, Eun-Shik; Loppi, Stefano; Lahiri, Susanta; Liu, Shirong; Lux, Alexander; Ma, Lena; Marcovecchio, Jorge; Meers, Erik; Mench, Michel; Michalke, Bernhard; Mowafaq, Mohammed; Namiesnik, Jacek; Nriagu, Jerome; Öztürk, Munir; Pacyna, Jozef M; Pehkonen, Simo; Renella, Giancarlo; Rinklebe, Jörg; Robinson, Bret; Saiki, Mitiko; Szefer, Piotr; Tabors, Guntis; Tack, Filipe; Suchara, Ivan; Vangronsveld, Jaco; Vasconcellos, Marina; Wang, Meie; Waclawek, Maria; Wolterbeek, Bert; Wünschmann, Simone

2020

Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies

Möckel, Claudia; Breivik, Knut; Nøst, Therese Haugdahl; Sankoh, Alhaji; Jones, Kevin C.; Sweetman, Andrew

Organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and chlorinated paraffins (CPs)) and heavy metals and metalloids (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Zn) were analysed in surface soil samples from the Agbogbloshie e-waste processing and dumping site in Accra (Ghana). In order to identify which of the pollutants are likely to be linked specifically to handling of e-waste, samples were also collected from the Kingtom general waste site in Freetown (Sierra Leone). The results were compared using principal component analyses (PCA). PBDE congeners found in technical octa-BDE mixtures, highly chlorinated PCBs and several heavy metals (Cu, Pb, Ni, Cd, Ag and Hg) showed elevated concentrations in the soils that are likely due to contamination by e-waste. PCAs associated those compounds with pyrogenic PAHs, suggesting that burning of e-waste, a common practice to isolate valuable metals, may cause this contamination. Moreover, other contamination pathways, especially incorporation of waste fragments into the soil, also appeared to play an important role in determining concentrations of some of the pollutants in the soil. Concentrations of several of these compounds were extremely high (especially PBDEs, heavy metals and SCCPs) and in some cases exceeded action guideline levels for soil. This indicates that exposure to these contaminants via the soil alone is potentially harmful to the recyclers and their families living on waste sites. Many organic contaminants and other exposure pathways such as inhalation are not yet included in such guidelines but may also be significant, given that deposition from the air following waste burning was identified as a major pollutant source.

2020

Camera observation and modelling of 4D tracer dispersion in the atmosphere

Stebel, Kerstin; Cassiani, Massimo; Ardeshiri, Hamidreza; Bernardo, Cirilo; Dinger, Anna Solvejg; Kylling, Arve; Park, Soon-Young; Pisso, Ignacio; Schmidbauer, Norbert; Stohl, Andreas

2020

Publication
Year
Category