Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 39 of 390:

Publication  
Year  
Category

Nivåer av tungmetaller og PCBer i elgkjøtt fra Sør-Varanger 2020

Aspholm, Paul Eric; Beddari, Benedicte; Søvik, Ingrid; Fløistad, Ida Marie Bardalen; Englund, Monika Strasser; Enge, Ellen Katrin; Vadset, Marit; Heimstad, Eldbjørg Sofie; Hagen, Snorre

Under høstjakta på elg (Alces alces) i 2020 ble det tatt vevsprøver til analyser av tungmetaller og PCB. Tungmetallprøver ble tatt av 24 individer; 4 hunnkalver, 4 hannkalver, 3 hanner av åringer og 13 okser (voksne hanner). PCB analyser ble gjort av vevsprøver som ble tatt av 2 hunnkalver, 3 hannkalver, 2 hann-åringer og 9 okser (totalt 16 dyr). De felte dyrene har god geografisk spredning fra sør til nord og nord-øst i kommunen. Tungmetallene som ble analysert var krom (Cr), nikkel (Ni), kobber (Cu), sink (Zn), arsen (As), sølv (Ag), kadmium (Cd), tinn (Sn), bly (Pb) og kvikksølv (Hg). PCB ble analysert for 34 kongenere pluss sumPCB6 og sumPCB7. De fleste konsentrasjonene av tungmetallene var svært lave og flere var under deteksjonsgrensene. Ellers var det bare sporadiske lave forekomster av de 32 PCBene som ble funnet i noen av de undersøkte elgene. Det var bare heksaklorbensen som ble detektert i alle prøvene fra elgene).

NIBIO

2023

A flexible algorithm for network design based on information theory

Thompson, Rona Louise; Pisso, Ignacio

A novel method for atmospheric network design is presented, which is based on information theory. The method does not require calculation of the posterior uncertainty (or uncertainty reduction) and is therefore computationally more efficient than methods that require this. The algorithm is demonstrated in two examples: the first looks at designing a network for monitoring CH4 sources using observations of the stable carbon isotope ratio in CH4 (δ13C), and the second looks at designing a network for monitoring fossil fuel emissions of CO2 using observations of the radiocarbon isotope ratio in CO2 (Δ14CO2).

2023

SCCS scientific opinion on Butylated hydroxytoluene (BHT) - SCCS/1636/21

Granum, Berit; Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Ezendam, Janine; Gaffet, Eric; Galli, Corrado Lodovico; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Vanhaecke, Tamara; Wijnhoven, Susan; Koutsodimou, Aglaia; Uter, Wolfgang; von Goetz, Natalie

Elsevier

2023

Global agricultural ammonia emissions simulated with the ORCHIDEE land surface mode

Beaudor, Maureen; Vuichard, Nicolas; Lathière, Juliette; Evangeliou, Nikolaos; Van Damme, Martin; Clarisse, Lieven; Hauglustaine, Didier

Ammonia (NH3) is an important atmospheric constituent. It plays a role in air quality and climate through the formation of ammonium sulfate and ammonium nitrate particles. It has also an impact on ecosystems through deposition processes. About 85 % of NH3 global anthropogenic emissions are related to food and feed production and, in particular, to the use of mineral fertilizers and manure management. Most global chemistry transport models (CTMs) rely on bottom-up emission inventories, which are subject to significant uncertainties. In this study, we estimate emissions from livestock by developing a new module to calculate ammonia emissions from the whole agricultural sector (from housing and storage to grazing and fertilizer application) within the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) global land surface model. We detail the approach used for quantifying livestock feed management, manure application, and indoor and soil emissions and subsequently evaluate the model performance. Our results reflect China, India, Africa, Latin America, the USA, and Europe as the main contributors to global NH3 emissions, accounting for 80 % of the total budget. The global calculated emissions reach 44 Tg N yr−1 over the 2005–2015 period, which is within the range estimated by previous work. Key parameters (e.g., the pH of the manure, timing of N application, and atmospheric NH3 surface concentration) that drive the soil emissions have also been tested in order to assess the sensitivity of our model. Manure pH is the parameter to which modeled emissions are the most sensitive, with a 10 % change in emissions per percent change in pH. Even though we found an underestimation in our emissions over Europe (−26 %) and an overestimation in the USA (+56 %) compared with previous work, other hot spot regions are consistent. The calculated emission seasonality is in very good agreement with satellite-based emissions. These encouraging results prove the potential of coupling ORCHIDEE land-based emissions to CTMs, which are currently forced by bottom-up anthropogenic-centered inventories such as the CEDS (Community Emissions Data System).

2023

Environmental pollutants in the terrestrial and urban environment 2021. Revised report.

Heimstad, Eldbjørg Sofie; Moe, Børge; Herzke, Dorte; Borgen, Anders; Enge, Ellen Katrin; Nordang, Unni Mette; Bæk, Kine; Nipen, Maja; Hanssen, Linda

Samples from the urban terrestrial environment in the Oslo area were analysed for metals and a large number of organic environmental pollutants. The selected samples that were analysed were soil, earthworm, fieldfare egg and liver, brown rat liver, roe deer liver, vegetation, insects and red fox liver. Biomagnification-potential was estimated based on detected data for relevant predator-prey pairs.

NILU

2023

On coarse patterns in the atmospheric concentration of ice nucleating particles

Conen, Franz; Yakutin, Mikhail V; Puchnin, Alexander; Yttri, Karl Espen

The atmospheric concentration of ice nucleating particles active at around −10 °C (INP−10) is very low. Nevertheless, these particles play a role in the development of cloud systems, so their spatial and temporal patterns merit attention. We collated available datasets on INP−10 to identify such patterns. Among the five low altitude observatories in northern Eurasia, median values throughout May to October were lowest in Scandinavia (4 and 6 m−3), somewhat higher in central Europe (11 m−3), substantially higher in the West Siberian Plain (69 m−3) and highest in the Central Yakutian Lowland (204 m−3), suggesting that the abundance of INP−10 in northern Eurasia may increase with continentality and from West to East. The range of values at the same observatories was narrower throughout November to April (2 to 27 m−3). On average, by an order of magnitude smaller values were reported for the four Arctic observatories. Consequently, increasing poleward transport of air masses from the midlatitudes likely raises the concentration of INP−10 in the Arctic, particularly when air masses had surface contact in eastern parts of northern Eurasia.

Elsevier

2023

An optimised organic carbon/elemental carbon (OC/EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters

Rauber, Martin; Salazar, Gary; Yttri, Karl Espen; Szidat, Sönke

Radiocarbon (14C) analysis of carbonaceous aerosols is used for source apportionment, separating the carbon content into fossil vs. non-fossil origin, and is particularly useful when applied to subfractions of total carbon (TC), i.e. elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC), and water-insoluble OC (WINSOC). However, this requires an unbiased physical separation of these fractions, which is difficult to achieve. Separation of EC from OC using thermal–optical analysis (TOA) can cause EC loss during the OC removal step and form artificial EC from pyrolysis of OC (i.e. so-called charring), both distorting the 14C analysis of EC. Previous work has shown that water extraction reduces charring. Here, we apply a new combination of a WSOC extraction and 14C analysis method with an optimised separation that is coupled with a novel approach of thermal-desorption modelling for compensation of EC losses. As water-soluble components promote the formation of pyrolytic carbon, water extraction was used to minimise the charring artefact of EC and the eluate subjected to chemical wet oxidation to CO2 before direct 14C analysis in a gas-accepting accelerator mass spectrometer (AMS). This approach was applied to 13 aerosol filter samples collected at the Arctic Zeppelin Observatory (Svalbard) in 2017 and 2018, covering all seasons, which bear challenges for a simplified 14C source apportionment due to their low loading and the large portion of pyrolysable species. Our approach provided a mean EC yield of 0.87±0.07 and reduced the charring to 6.5 % of the recovered EC amounts. The mean fraction modern (F14C) over all seasons was 0.85±0.17 for TC; 0.61±0.17 and 0.66±0.16 for EC before and after correction with the thermal-desorption model, respectively; and 0.81±0.20 for WSOC.

2023

Sheath formation time for spherical Langmuir probes

Kjølerbakken, Kai Morgan; Miloch, Wojciech Jacek; Røed, Ketil

The formation time of the surrounding sheath of Langmuir probes in an ionospheric plasma has been studied to better understand the constraints this puts on the sampling frequency of a probe. A fully kinetic three-dimensional particle-in-cell model is used to simulate the temporal effects in the electron saturation region as the sheath forms. The stability of the probe current and the stability of the ion and electron density in the vicinity of the probe have been used to evaluate when the sheath was formed. Simulated results were compared with theoretical models and are in good agreement with the theoretical results. This shows that theoretical models can be used as guidance to estimate the formation time and to determine the sampling rate for a swept bias Langmuir system. Our results also show that the formation time is less affected by the plasma temperature and bias voltage as we move into the thick sheath regime, and will instead be determined by the plasma density. The presented results also show that applying a step function to the probe could be used to characterise ions species composition, or to estimate the ion density.

Cambridge University Press

2023

Finnfjord AS. Oppdaterte spredningsberegninger av utslipp til luft.

Berglen, Tore Flatlandsmo; Markelj, Miha; Weydahl, Torleif; Svendby, Tove Marit; Grythe, Henrik; Tønnesen, Dag

NILU har vurdert spredning av utslipp til luft fra Finnfjord AS sitt smelteverk ved Finnsnes. Bakgrunnen er oppdaterte krav fra Miljødirektoratet. Fokus i studien er på NOx, SO2 og støv/partikler. Det er utført lokale spredningsberegninger ved hjelp av modellen CONDEP. Regionale beregninger av konsentrasjoner og avsetning er utført med WRF-EMEP modellsystemet. En stor andel av forurensningen slippes ut fra tak. Dette kan gi turbulens og bygningsnedtrekk som igjen gir høye konsentrasjoner rett ved smelteverket og i umiddelbar nærhet. CONDEP-beregningene viser at for NO2 og støv/PM er norske grenseverdier overholdt. For SO2 kan overskridelse av grenseverdier oppstå opptil 500-600 m fra smelteverket. WRF-EMEP-beregningene viser liten påvirkning på regional skala. Av utslippene fra Finnfjord AS avsettes 16 % av nitrogen, 15 % av svovel og 12 % av PM innenfor det innerste gridet (105 x 105 km2). Det gis også anbefaling om målinger av SO2 og meteorologi for å tallfeste påvirkningen fra Finnfjord AS på omgivelsene.

NILU

2023

An Unprecedented Arctic Ozone Depletion Event During Spring 2020 and Its Impacts Across Europe

Petkov, Boyan H.; Vitale, Vito; Di Carlo, Piero; Drofa, Oxana; Mastrangelo, Daniele; Smedley, Andrew R.D.; Diemoz, Henri; Siani, Anna-Maria; Fountoulakis, Ilias; Webb, Ann R; Bais, Alkiviadis; Kift, Richard; Rimmer, John; Hansen, Georg Heinrich; Svendby, Tove Marit; Pazmino, Andrea; Werner, Rolf; Atanassov, Atanas M.; Láska, Kamil; De Backer, Hugo; Mangold, Alexander; Köhler, Ulf; Velazco, Voltaire A.; Stübi, René; Solomatnikova, Anna; Pavlova, Kseniya; Sobolewski, Piotr S.; Johnsen, Bjørn; Goutail, Florence; Misaga, Oliver; Aruffo, Eleonora; Metelka, Ladislav; Tóth, Zoltán; Fekete, Dénes; Aculinin, Alexandr A.; Lupi, Angelo; Mazzola, Mauro; Zardi, Federico

The response of the ozone column across Europe to the extreme 2020 Arctic ozone depletion was examined by analyzing ground-based observations at 38 European stations. The ozone decrease at the northernmost site, Ny-Ålesund (79°N) was about 43% with respect to a climatology of more than 30 years. The magnitude of the decrease declined by about 0.7% deg−1 moving south to reach nearly 15% at 40°N. In addition, it was found that the variations of the ozone column at each of the selected stations in March-May were similar to those observed at Ny-Ålesund but with a delay increasing to about 20 days at mid-latitudes with a gradient of approximately 0.5 days deg−1. The distributions of reconstructed ozone column anomalies over a sector covering a large European area show decreasing ozone that started from the north at the beginning of April 2020 and spread south. Such behavior was shown to be similar to that observed after the Arctic ozone depletion in 2011. Stratospheric dynamical patterns in March–May 2011 and during 2020 suggested that the migration of ozone-poor air masses from polar areas to the south after the vortex breakup caused the observed ozone responses. A brief survey of the ozone mass mixing ratios at three stratospheric levels showed the exceptional strength of the 2020 episode. Despite the stronger and longer-lasting Arctic ozone loss in 2020, the analysis in this work indicates a similar ozone response at latitudes below 50°N to both 2011 and 2020 phenomena.

American Geophysical Union (AGU)

2023

A Portal supporting Risk Governance of nano- and advanced materials and nano-enabled products

Bouman, Evert Alwin; Isigonis, Panagiotis; Afantitis, Antreas; Jensen, K. A.; Fransman, W.; Drobne, D.; Pozuelo Rollón, B.; Ballesteros, A.; Rodriguez-Llopis, I.; Säämänen, A.

2023

A high-resolution dynamic probabilistic material flow analysis of seven plastic polymers; A case study of Norway

Abbasi, Golnoush; Hauser, Marina Jennifer; Baldé, Cornelis Peter; Bouman, Evert Alwin

Plastic pollution has long been identified as one of the biggest challenges of the 21st century. To tackle this problem, governments are setting stringent recycling targets to keep plastics in a closed loop. Yet, knowledge of the stocks and flows of plastic has not been well integrated into policies. This study presents a dynamic probabilistic economy-wide material flow analysis (MFA) of seven plastic polymers (HDPE, LDPE, PP, PS, PVC, EPS, and PET) in Norway from 2000 to 2050. A total of 40 individual product categories aggregated into nine industrial sectors were examined. An estimated 620 ± 23 kt or 114 kg/capita of these seven plastic polymers was put on the Norwegian market in 2020. Packaging products contributed to the largest share of plastic put on the market (∼40%). The accumulated in-use stock in 2020 was about 3400 ± 56 kt with ∼60% remaining in buildings and construction sector. In 2020, about 460 ± 22 kt of plastic waste was generated in Norway, with half originating from packaging. Although ∼50% of all plastic waste is collected separately from the waste stream, only around 25% is sorted for recycling. Overall, ∼50% of plastic waste is incinerated, ∼15% exported, and ∼10% landfilled. Under a business-as-usual scenario, the plastic put on the market, in-use stock, and waste generation will increase by 65%, 140%, and 90%, respectively by 2050. The outcomes of this work can be used as a guideline for other countries to establish the stocks and flows of plastic polymers from various industrial sectors which is needed for the implementation of necessary regulatory actions and circular strategies. The systematic classification of products suitable for recycling or be made of recyclate will facilitate the safe and sustainable recycling of plastic waste into new products, cap production, lower consumption, and prevent waste generation.

Elsevier

2023

Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records

Eckhardt, Sabine; Pisso, Ignacio; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Plach, Andreas; McConnell, Joseph R.; Sigl, Michael; Ruppel, Meri; Zdanowicz, Christian; Lim, Saehee; Chellman, Nathan J; Opel, Thomas; Meyer, Hanno; Steffensen, Jørgen Peder; Schwikowski, Margit; Stohl, Andreas

Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.

Springer Nature

2023

The AirGAM 2022r1 air quality trend and prediction model

Walker, Sam-Erik; Solberg, Sverre; Schneider, Philipp; Guerreiro, Cristina

This paper presents the AirGAM 2022r1 model – an air quality trend and prediction model developed at the Norwegian Institute for Air Research (NILU) in cooperation with the European Environment Agency (EEA) over 2017–2021. AirGAM is based on nonlinear regression GAMs – generalised additive models – capable of estimating trends in daily measured pollutant concentrations at air quality monitoring stations, discounting for the effects of trends and time variations in corresponding meteorological data. The model has been developed primarily for the compounds NO2, O3, PM10, and PM2.5. Meteorological input data consist of temperature, wind speed and direction, planetary boundary layer height, relative and absolute humidity, cloud cover, and precipitation over the period considered. The exact set of meteorological variables used in the model depends on the compound selected for analysis. In addition to meteorological variables introduced in the model as covariates, i.e. explanatory variables for the concentration levels, the model also incorporates time variables such as the day of the week, day of the year, and overall time, which is related to the model's trend term. The trend analysis is performed at each station separately. Thus, the model only considers the temporal features of concentrations and meteorology at a station, rather than any spatial correlations or dependencies between stations. AirGAM is implemented using the R language for statistical computing and, in particular, the GAM package mgcv. In the model, meteorological and time covariates are represented and estimated as smooth nonlinear functions of the corresponding variables. Thus, the trend term is defined and estimated as a smooth nonlinear function of time over the period selected for analysis. Once fitted to training data, the model may be used as a prediction tool capable of predicting air pollutant concentrations for new sets of meteorological and time data which are not in the training set – e.g. for cross-validation or forecasting purposes. The model does not explicitly use emissions or background concentrations – these are sought to be implicitly represented through the estimated nonlinear relations between meteorology, time, and concentrations. In addition to meteorology-adjusted trends, the program also produces unadjusted trends – i.e. trends based on the same regression set-up but only including the time covariates. Both types of trends can be output in the same run, making it possible to compare them. Ideally, the meteorology-adjusted trend will show the trend in concentration mainly due to changes in emissions or physicochemical processes not induced by changes in meteorology. AirGAM has been developed and tested primarily in trend studies based on measurement data hosted by the EEA, including the AirBase data (before 2013) and the Air Quality e-Reporting (AQER) data from 2013 and onwards. Still, the model is general and could be applied in other regions with other input data. The EEA data provide daily or hourly surface measurements at individual monitoring stations in Europe. For input meteorological data, we extract time series from the gridded meteorological re-analysis (ERA5) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for each monitoring station. The paper presents results with the model for all AirBase/AQER stations in Europe from the latest EEA trend study for 2005–2019.

2023

planet e: Tore für die Umwelt. Wie Fußball nachhaltig werden soll.

Herzke, Dorte; Halsband, Claudia (interview subjects)

2023

Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials

Elje, Elisabeth; Mariussen, Espen; McFadden, Erin; Dusinska, Maria; Rundén-Pran, Elise

For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R’s to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air–liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.

MDPI

2023

Does contaminant exposure disrupt maternal hormones deposition? A study on per- and polyfluoroalkyl substances in an Arctic seabird

Jouanneau, William; Léandri-Breton, Don-Jean; Herzke, Dorte; Moe, Børge; Nikiforov, Vladimir; Pallud, Marie; Parenteau, Charline; Gabrielsen, Geir Wing; Chastel, Olivier

Elsevier

2023

Arctic tropospheric ozone: assessment of current knowledge and model performance

Whaley, Cynthia; Law, Kathy S.; Hjorth, Jens Liengaard; Skov, Henrik; Arnold, Stephen R.; Langner, Joakim; Pernov, Jakob Boyd; Bergeron, Garance; Bourgeois, Ilann; Christensen, Jesper H.; Chien, Rong-You; Deushi, Makoto; Dong, Xinyi; Effertz, Peter; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Huey, Greg L.; Im, Ulas; Kivi, Rigel; Marelle, Louis; Onishi, Tatsuo; Oshima, Naga; Petropavlovskikh, Irina; Peischl, Jeff; Plummer, David A.; Pozzoli, Luca; Raut, Jean-Christophe; Ryerson, Tom; Skeie, Ragnhild Bieltvedt; Solberg, Sverre; Thomas, Manu Anna; Thompson, Chelsea R.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; von Salzen, Knut; Tarasick, David

As the third most important greenhouse gas (GHG) after carbon dioxide (CO2) and methane (CH4), tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O3 near the tropopause (∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O3 precursors (CO, NOx, and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and possibly overestimating OH. Throughout the vertical profile (compared to aircraft measurements), the MMM underestimates both CO and NOx but overestimates PAN. Perhaps as a result of competing deficiencies, the MMM O3 matches the observed O3 reasonably well. Our findings suggest that despite model updates over the last decade, model results are as highly variable as ever and have not increased in accuracy for representing Arctic tropospheric O3.

2023

Spatial distribution of Dechlorane Plus and dechlorane related compounds in European background air

Skogeng, Lovise Pedersen; Halvorsen, Helene Lunder; Breivik, Knut; Eckhardt, Sabine; Herzke, Dorte; Möckel, Claudia; Krogseth, Ingjerd Sunde

The highly chlorinated chemical Dechlorane Plus (DP) was introduced as a replacement flame retardant for Mirex, which is banned through the Stockholm Convention (SC) for its toxicity (T), environmental persistence (P), potential for bioaccumulation (B) and long-range environmental transport potential (LRETP). Currently, Dechlorane Plus is under consideration for listing under the Stockholm Convention and by the European Chemical Agency as it is suspected to also have potential for P, B, T and LRET. Knowledge of atmospheric concentrations of chemicals in background regions is vital to understand their persistence and long-range atmospheric transport but such knowledge is still limited for Dechlorane Plus. Also, knowledge on environmental occurrence of the less described Dechlorane Related Compounds (DRCs), with similar properties and uses as Dechlorane Plus, is limited. Hence, the main objective of this study was to carry out a spatial mapping of atmospheric concentrations of Dechlorane Plus and Dechlorane Related Compounds at background sites in Europe. Polyurethane foam passive air samplers were deployed at 99 sites across 33 European countries for 3 months in summer 2016 and analyzed for dechloranes. The study showed that syn- and anti-DP are present across the European continent...

Frontiers Media S.A.

2023

Status of Earth Observation and Remote Sensing Applications in Svalbard

Jawak, Shridhar D.; Pohjola, Veijo; Kääb, Andreas Max; Andersen, Bo Nyborg; Błaszczyk, Małgorzata; Salzano, Roberto; Luks, Bartlomiej; Enomoto, Hiroyuki; Høgda, Kjell Arild; Moholdt, Geir; Dinessen, Frode; Fjæraa, Ann Mari

MDPI

2023

Modelling the 2021 East Asia super dust storm using FLEXPART and FLEXDUST and its comparison with reanalyses and observations

Tang, Hui; Haugvaldstad, Ove Westermoen; Stordal, Frode; Bi, Jianrong; Zwaaftink, Christine Groot; Grythe, Henrik; Wang, Bin; Rao, Zhimin; Zhang, Zhongshi; Berntsen, Terje Koren; Kaakinen, Anu

The 2021 East Asia sandstorm began from the Eastern Gobi desert steppe in Mongolia on March 14, and later spread to northern China and the Korean Peninsula. It was the biggest sandstorm to hit China in a decade, causing severe air pollution and a significant threat to human health. Capturing and predicting such extreme events is critical for society. The Lagrangian particle dispersion model FLEXPART and the associated dust emission model FLEXDUST have been recently developed and applied to simulate global dust cycles. However, how well the model captures Asian dust storm events remains to be explored. In this study, we applied FLEXPART to simulate the recent 2021 East Asia sandstorm, and evaluated its performance comparing with observation and observation-constrained reanalysis datasets, such as the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and CAMS global atmospheric composition forecasts (CAMS-F). We found that the default setting of FLEXDUST substantially underestimates the strength of dust emission and FLEXPART modelled dust concentration in this storm compared to that in MERRA-2 and CAMS-F. An improvement of the parametrization of bare soil fraction, topographical scaling, threshold friction velocity and vertical dust flux scheme based on Kok et al. (Atmospheric Chemistry and Physics, 2014, 14, 13023–13041) in FLEXDUST can reproduce the strength and spatio-temporal pattern of the dust storm comparable to MERRA-2 and CAMS-F. However, it still underestimates the observed spike of dust concentration during the dust storm event over northern China, and requires further improvement in the future. The improved FLEXDUST and FLEXPART perform better than MERRA-2 and CAMS-F in capturing the observed particle size distribution of dust aerosols, highlighting the importance of using more dust size bins and size-dependent parameterization for dust emission, and dry and wet deposition schemes for modelling the Asian dust cycle and its climatic feedbacks.

Frontiers Media S.A.

2023

Publication
Year
Category