Found 9746 publications. Showing page 40 of 390:
Information on the global production and environmental releases of persistent organic pollutants (POPs) is of critical importance for regulating and eliminating these chemical substances of worldwide environmental and health concerns. Here, we conduct an extensive literature review to collect and curate quantitative information on the historical global production and multimedia environmental releases of 25 intentionally produced POPs. Our assembled data indicate that as of 2020, a cumulative total of 31 306 kilotonnes (kt) of the 25 POPs had been synthesized and commercialized worldwide, resulting in cumulative releases of 20 348 kt into the global environment. As of 2020, short-chain chlorinated paraffins were the most produced POP, with a historical global cumulative tonnage amounting to 8795 kt, whereas α-hexachlorocyclohexane (HCH) had the largest historical global cumulative environmental releases of 6567 kt among these 25 POPs. The 1970s witnessed the peak in the annual global production of the 25 investigated POPs. The United States and Europe used to be the hotspots of environmental releases of the 25 investigated POPs, notably in the 1960s and 1970s. By contrast, global environmental releases occurred primarily in China in the 2000s–2010s. Preliminary efforts are also made to integrate the production volume information with “hazard” attributes (persistence, bioaccumulation, toxicity, and long-range transport potential) in the evaluation of potential environmental impacts of the 25 POPs. The results show that dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) are potentially associated with higher environmental impacts than other POPs because they are among the top rankings in both the global cumulative production and hazard indicators. This work for the first time reveals the astonishing magnitudes of POP production and environmental releases in contemporary human history. It also underscores the importance of tonnage information in assessments of POPs, POP candidates, and other chemicals of emerging concern.
Royal Society of Chemistry (RSC)
2023
Genotoxic effects of occupational exposure to glass fibres - A human biomonitoring study.
As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated.
The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay).
Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively.
Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.
2023
Plastic pollution (including microplastics) has been reported in a variety of biotic and abiotic compartments across the circumpolar Arctic. Due to their environmental ubiquity, there is a need to understand not only the fate and transport of physical plastic particles, but also the fate and transport of additive chemicals associated with plastic pollution. Further, there is a fundamental research gap in understanding long-range transport of chemical additives to the Arctic via plastics as well as their behavior under environmentally relevant Arctic conditions. Here, we comment on the state of the science of plastic as carriers of chemical additives to the Arctic, and highlight research priorities going forward. We suggest further research on the transport pathways of chemical additives via plastics from both distant and local sources and laboratory experiments to investigate chemical behavior of plastic additives under Arctic conditions, including leaching, uptake, and bioaccumulation. Ultimately, chemical additives need to be included in strategic monitoring efforts to fully understand the contaminant burden of plastic pollution in Arctic ecosystems.
2023
2022
Copernicus Atmosphere Monitoring Service
2022
2022
2022
Multisensory Representation of Air Pollution in Virtual Reality: Lessons from Visual Representation
The world is facing the problem of anthropogenic climate
change and air pollution. Despite many years of development, already
established methods of influencing behaviour remain ineffective. The
effect of such interventions is very often a declaration of behaviour change
that is not followed by actual action. Moreover, despite intensive informa-
tion campaigns, many people still do not have adequate knowledge on the
subject, are not aware of the problem or, worse, deny its existence. Pre-
vious attempts to introduce real change were based on providing infor-
mation, persuasion or visualisation. We propose the use of multi-sensory
virtual reality to investigate the problem more thoroughly and then design
appropriate solutions. In this paper, we introduce a new immersive virtual
environment that combines free exploration with a high level of experi-
mental control, physiological and behavioural measures. It was created on
the basis of transdisciplinary scientific cooperation, participatory design
and research. We used the unique features of virtual environments to
reverse and expand the idea of pollution pods by Pinsky. Instead of closing
participants in small domes filled with chemical substances imitating pol-
lution, we made it possible for them to freely explore an open environment
- admiring the panorama of a small town from the observation deck located
on a nearby hill. Virtual reality technology enables the manipulation of
representations of air pollution, the sensory modalities with which they are
transmitted (visual, auditory, tactile and smell stimuli) and their intensity.
Participants’ reactions from the initial tests of the application showed that
it is a promising solution. We present the possibilities of applying the new
solution in psychological research and its further design and development
opportunities in collaboration with communities and other stakeholders
in the spirit of citizen science.
2022
FAIRMODE Guidance Document on Modelling Quality Objectives and Benchmarking. Version 3.3.
The development of the procedure for air quality model benchmarking in the context of the Air Quality Directive 2008/50/EC (AQD) has been an on-going activity in the context of the FAIRMODE community, chaired by the JRC. A central part of the studies was the definition of proper modelling quality indicators and criteria to be fulfilled in order to allow sufficient level of quality for a given model application under the AQD. The focus initially on applications related to air quality assessment has gradually been expanded to other applications, such as forecasting and planning. The main purpose of this Guidance Document is to explain and summarise the current concepts of the modelling quality objective methodology, elaborated in various papers and documents in the FAIRMODE community, addressing model applications for air quality assessment and forecast. Other goals of the Document are linked to presentation and explanation of templates for harmonised reporting of modelling results. Giving an overview of still open issues in the implementation of the presented methodology, the document aims at triggering further research and discussions. A core set of statistical indicators is defined using pairs of measurement-modelled data. The core set is the basis for the definition of a modelling quality indicator (MQI) and additional modelling performance indicators (MPI), which take into account the measurement uncertainty. The MQI describes the discrepancy between measurements and modelling results (linked to RMSE), normalised by measurement uncertainty and a scaling factor. The modelling quality objective (MQO) requires MQI to be less than or equal to 1. With an arbitrary selection of the scaling factor of 2, the fulfilment of the MQO means that the allowed deviation between modelled and measured concentrations is twice the measurement uncertainty. Expressions for the MQI calculation based on time series and yearly data are introduced. MPI refer to aspects of correlation, bias and standard deviation, applied to both the spatial and temporal dimensions. Similarly to the MQO for the MQI, modelling performance criteria (MPC) are defined for the MPI; they are necessary, but not sufficient criteria to determine whether the MQO is fulfilled. The MQO is required to be fulfilled at 90% of the stations, a criterion which is implicitly taken into account in the derivation of the MQI. The associated modelling uncertainty is formulated, showing that in case of MQO fulfilment the modelling uncertainty must not exceed 1.75 times the measurement one (with the scaling factor fixed to 2). A reporting template is presented and explained for hourly and yearly average data. In both cases there is a diagram and a table with summary statistics. In a separate section open issues are discussed and an overview of related publications and tools is provided. Finally, a chapter on modelling quality objectives for forecast models is introduced. In Annex 1, we discuss the measurement uncertainty which is expressed in terms of concentration and its associated uncertainty. The methodology for estimating the measurement uncertainty is overviewed and the parameters for its calculation for PM, NO2 and O3 are provided. An expression for the associated modelling uncertainty is also given. This aim of this document is to support modelling groups, local, regional and national authorities in their modelling application, in the context of air quality policy.
Publications Office for the European Union
2022
Information on the origin of pollution is an essential element of air quality management that helps identifying measures to control air pollution. In this document, we review the most widely used source-apportionment (SA) methods for air quality management. The focus is on particulate matter but examples are provided for NO2 as well. Using simple theoretical examples, we explain the differences between these methods and the circumstances where they give different results and thus possibly different conclusions for air quality management. These differences are a consequence of the assumptions that underpin each methodology and determine/limit their range of applicability. We show that ignoring these underlying assumptions is a risk for efficient/successful air quality management when the methods are used outside their scope or range of applicability.
Publications Office for the European Union
2022
Best practices for local and regional air quality management. Version 1.
FAIRMODE is the Forum for Air Quality Modeling created for exchanging experience and results from air quality modeling in the context of the Air Quality Directives (AQD) and for promoting the use of modeling for air quality assessment and management. FAIRMODE is organized in different activities and task, called cross-cutting tasks, to which representative of Member States and experts participate. Among the different activities, one is devoted to Air Quality management practices, called cross-cutting task 5 (CT5). This report is indeed based on the last activities of the FAIRMODE Cross Cutting Task 5 (CT5), focusing, in particular, on elaborating recommendations to support local, regional and national authorities in the use of modelling for the development of air quality plans, defining on how to quantify emission changes associated to a set of measures, and quantifying their impacts in terms of concentration (using an ‘impact pathway approach’ from ‘abatement measure’ to ‘emissions’ to ‘concentrations’). This is done on one side taking advantage of the results already produced by previous FAIRMODE working groups and in coordination with existing activities under other FAIRMODE CTs. On the other side, examples of best practice policies are presented, focusing on Low emission zones: with an example on Antwerp and Copenhagen, Measures on non-exhaust traffic to reduce PM, with an application on Stockholm. How to reduce ozone concentrations, with a focus on local to global contributions. How to build an air quality plan in an integrated way, with an application on Italy. How to evaluate the socio-economic impact of measures, focusing on a case study on UK. The results show how different pollutants should be tackled differently, the importance of integration among different sectoral plans (on emissions, greenhouse gases mitigation, …) and also how other dimensions of the problem (i.e. social aspects) should be considered when building air quality plans.
Publications Office for the European Union
2022
2022
This report aims to support the on-going revision of the Ambient Air Quality Directives by providing a series of recommendations on the reciprocal exchange of information and reporting of ambient air quality (e-reporting) following the Commission Implementing Decision (2011/850/EU). It builds on the experience and understanding from the EEA and technical experts at its European Topic Centre for Human Health and the Environment (ETC HE) working with implementing provisions for reporting (IPR) and identifies areas for further efficiency gains in e-reporting, in particular concerning the H-K dataflows.
ETC/HE
2022
Environmental contaminants in freshwater food webs, 2021
This report presents monitoring data from freshwater food webs and abiotic samples from Lake Mjøsa and Femunden within the
Milfersk programme. Studies and monitoring of legacy and emerging contaminants have been carried out through this programme
for several years, focusing on the pelagic food web. This is the first report in the monitoring program focusing on a benthic food
chain (Chironomids, ruffe, roach and perch) in addition to inputs to Lake Mjøsa by analysis of lake sediments, surface waters,
stormwater, effluent and sludge from a wastewater treatment plant (WWTP). The analytical programme includes the determination
of a total of ̴ 260 single components.
Norsk institutt for vannforskning
2022
Atmospheric Supply of Nitrogen, Copper, HCB, BDE-99, SCCP and PFOS to the Baltic Sea in 2020.
Norwegian Meteorological Institute
2022
Microplastics in Norwegian coastal areas, rivers, lakes and air (MIKRONOR1)
Norsk institutt for vannforskning
2022
State of the Climate in 2021: The Arctic
American Meteorological Society
2022
Frontiers Media S.A.
2022
Microplastics in Norwegian coastal areas, rivers, lakes and air (MIKRONOR1)
Norsk institutt for vannforskning
2022
Forskerne fant flere varianter av det syntetiske stoffet PFAS i dyr enn forventet
Norges forskningsråd
2022