Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9886 publications. Showing page 103 of 396:

Publication  
Year  
Category

Observations of the solar UV irradiance and ozone column at Svalbard

Petkov, B. H.; Hansen, Georg Heinrich; Svendby, Tove Marit; Sobolewski, P. S.; Láska, K.; Elster, J.; Viola, A.; Mazzola, M.; Lupi, A.

2019

SESS report 2018. The State of Environmental Science in Svalbard – an annual report.

Orr, Elisabeth; Hansen, Georg; Lappalainen, Hanna; Hübner, Christiane E.; Lihavainen, Heikki (eds.)

Svalbard Integrated Arctic Earth Observing System (SIOS)

2019

Cleaning costs for European sheltered white painted steel and modern glass surfaces due to air pollution since the year 2000

Grøntoft, Terje; Verney-Carron, Aurelie; Tidblad, Johan

This paper reports estimated maintenance-cleaning costs, cost savings and cleaning interval increases for structural surfaces and windows in Europe obtainable by reducing the air pollution. Methodology and data from the ICP-materials project were used. The average present (2018) cleaning costs for sheltered white painted steel surfaces and modern glass due to air pollution over background, was estimated to be ~2.5 Euro/m2∙year. Hypothetical 50% reduction in the air pollution was found to give savings in these cleaning costs of ~1.5 Euro/m2∙year. Observed reduction in the air pollution, from 2002–2005 until 2011–2014, have probably increased the cleaning interval for white painted steel with ~100% (from 12 to 24 years), representing reductions in the single intervention cleaning costs from 7 to 4%/year (= % of one cleaning investment, per year during the cleaning interval) and for the modern glass with ~65% (from 0.85 to 1.3 years), representing reductions in the cleaning cost from 124 to 95%/year. The cleaning cost reductions, obtainable by 50% reduction in air pollution, would have been ~3 %/year for white painted steel and ~60%/year for the modern glass, representing ~100 and 50% additional cleaning interval increases. These potential cleaning cost savings are significantly higher than previously reported for the weathering of Portland limestone ornament and zinc monuments.

MDPI

2019

Air

Dickinson, Philip; Guerreiro, Cristina; Keating, Terry; Nzioka, John M.; Chung, Serena H.; Reis, Stefan

2019

Year-Round In Situ Measurements of Arctic Low-Level Clouds: Microphysical Properties and Their Relationships With Aerosols

Koike, Makoto; Ukita, Jinro; Ström, Johan; Tunved, Peter; Shiobara, Masataka; Vitale, Vito; Lupi, Angelo; Baumgardner, D.; Ritter, Christoph; Hermansen, Ove; Yamada, K.; Pedersen, Christina Alsvik

Two years of continuous in situ measurements of Arctic low‐level clouds have been made at the Mount Zeppelin Observatory (78°56′N, 11°53′E), in Ny‐Ålesund, Spitsbergen. The monthly median value of the cloud particle number concentration (Nc) showed a clear seasonal variation: Its maximum appeared in May–July (65 ± 8 cm−3), and it remained low between October and March (8 ± 7 cm−3). At temperatures warmer than 0 °C, a clear correlation was found between the hourly Nc values and the number concentrations of aerosols with dry diameters larger than 70 nm (N70), which are proxies for cloud condensation nuclei (CCN). When clouds were detected at temperatures colder than 0 °C, some of the data followed the summertime Nc to N70 relationship, while other data showed systematically lower Nc values. The lidar‐derived depolarization ratios suggested that the former (CCN‐controlled) and latter (CCN‐uncontrolled) data generally corresponded to clouds consisting of supercooled water droplets and those containing ice particles, respectively. The CCN‐controlled data persistently appeared throughout the year at Zeppelin. The aerosol‐cloud interaction index (ACI = dlnNc/(3dlnN70)) for the CCN‐controlled data showed high sensitivities to aerosols both in the summer (clean air) and winter–spring (Arctic haze) seasons (0.22 ± 0.03 and 0.25 ± 0.02, respectively). The air parcel model calculations generally reproduced these values. The threshold diameters of aerosol activation (Dact), which account for the Nc of the CCN‐controlled data, were as low as 30–50 nm when N70 was less than 30 cm−3, suggesting that new particle formation can affect Arctic cloud microphysics.

American Geophysical Union (AGU)

2019

Utslipp til luft fra Boliden Odda AS. Spredningsberegninger og konsekvensvurderinger av økte utslipp.

Weydahl, Torleif; Svendby, Tove Marit

NILU - Norsk institutt for luftforskning har på oppdrag for Boliden Odda AS, utført sprednings- og avsetningsberegninger i forbindelse med utslipp fra sinkproduksjonsanlegget. Studien beregner luftkonsentrasjon og avsetning av svovel (forsuring), og konsentrasjon av metaller/svevestøv ved dagens sinkproduksjon og ved en planlagt utvidelse. Timesmiddel-, døgnmiddel- og årsmiddel-konsentrasjon av SO2 og PM10 er beregnet til å være innenfor grenseverdier og luftkvalitetskriterier ved dagens og utvidet produksjon. Beregningene viser mulig overskridelse av målsetningsverdien for kadmium ved en utvidelse av produksjonen. Utvidelse i produksjon gir et ytterligere bidrag til overskridelsen av tålegrensen (forsuring) i området rundt Odda. Økningen i avsetning forøvrig er beregnet å være i områder hvor tålegrensen er mer robust.

NILU

2019

Fjerdeklassinger skal bli luftmålere

Høiskar, Britt Ann Kåstad (interview subject); Sandøy, Christopher I. (journalist)

2019

Lufta er for alle - NILU med nytt prosjekt

Solbakken, Christine Forsetlund (interview subject); Ridola, Hilde Nilsson (journalist)

2019

A woman of action

Herzke, Dorte (interview subject); Hansen, Christine Kristoffersen (journalist)

2019

ICOS Norway – a carbon cycle infrastructure

Lauvset, Siv Kari; Myhre, Cathrine Lund; Lange, Holger; Olsen, Are; Stohl, Andreas

The Integrated Carbon Observation System (ICOS) research infrastructure is aimed at quantifying and understanding the greenhouse gas balance of Europe and neighboring regions. ICOS-Norway brings together the leading
Norwegian institutes for greenhouse gas observations in the three Earth system domains atmosphere, ocean, and
terrestrial ecosystems, providing world-leading competence, which is integrated into one jointly funded and operated infrastructure. This provides Norway with a state-of-the-art research infrastructure embedded in European
and global efforts. Even though each Earth system domain was part of dedicated research infrastructures prior to
the establishment of ICOS-Norway, the greenhouse gas community in Norway was divided and there was minimal
collaboration across the Earth system domains. The overall goal of ICOS-Norway is to provide accurate and accessible data on, as well as integrated assessments of, the Norwegian carbon balance at regional scale, across the land,
ocean, and atmosphere. ICOS-Norway has thus led to an increased impact of environmental observing systems
in Norway and surrounding seas, easily seen through the number of publications and new proposals generated
as collaborative efforts. This poster presents the ICOS-Norway infrastructure, including plans for expansion and
long-term funding.

European Geosciences Union (EGU)

2019

Polycyclic Aromatic Hydrocarbons Not Declining in Arctic Air Despite Global Emission Reduction

Yu, Yong; Katsoyiannis, Athanasios A.; Bohlin-Nizzetto, Pernilla; Brorström-Lundén, Eva; Ma, Jianmin; Zhao, Yuan; Wu, Zhiyong; Tych, Wlodzimierz; Mindham, David; Sverko, Ed; Barresi, Enzo; Dryfhout-Clark, Helena; Fellin, Phil; Hung, Hayley

Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas > Zeppelin > Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as more volatile flame retardants and pesticides.

2019

An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US

Blyverket, Jostein; Hamer, Paul David; Bertino, Laurent; Albergel, Clément; Fairbairn, David; Lahoz, William A.

A number of studies have shown that assimilation of satellite derived soil moisture using the ensemble Kalman Filter (EnKF) can improve soil moisture estimates, particularly for the surface zone. However, the EnKF is computationally expensive since an ensemble of model integrations have to be propagated forward in time. Here, assimilating satellite soil moisture data from the Soil Moisture Active Passive (SMAP) mission, we compare the EnKF with the computationally cheaper ensemble Optimal Interpolation (EnOI) method over the contiguous United States (CONUS). The background error–covariance in the EnOI is sampled in two ways: (i) by using the stochastic spread from an ensemble open-loop run, and (ii) sampling from the model spinup climatology. Our results indicate that the EnKF is only marginally superior to one version of the EnOI. Furthermore, the assimilation of SMAP data using the EnKF and EnOI is found to improve the surface zone correlation with in situ observations at a 95% significance level. The EnKF assimilation of SMAP data is also found to improve root-zone correlation with independent in situ data at the same significance level; however this improvement is dependent on which in situ network we are validating against. We evaluate how the quality of the atmospheric forcing affects the analysis results by prescribing the land surface data assimilation system with either observation corrected or model derived precipitation. Surface zone correlation skill increases for the analysis using both the corrected and model derived precipitation, but only the latter shows an improvement at the 95% significance level. The study also suggests that assimilation of satellite derived surface soil moisture using the EnOI can correct random errors in the atmospheric forcing and give an analysed surface soil moisture close to that of an open-loop run using observation derived precipitation. Importantly, this shows that estimates of soil moisture could be improved using a combination of assimilating SMAP using the computationally cheap EnOI while using model derived precipitation as forcing. Finally, we assimilate three different Level-2 satellite derived soil moisture products from the European Space Agency Climate Change Initiative (ESA CCI), SMAP and SMOS (Soil Moisture and Ocean Salinity) using the EnOI, and then compare the relative performance of the three resulting analyses against in situ soil moisture observations. In this comparison, we find that all three analyses offer improvements over an open-loop run when comparing to in situ observations. The assimilation of SMAP data is found to perform marginally better than the assimilation of SMOS data, while assimilation of the ESA CCI data shows the smallest improvement of the three analysis products.

MDPI

2019

The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques

Rostkowski, Pawel; Haglund, Peter; Aalizadeh, Reza; Alygizakis, Nikiforos; Thomaidis, Nikolaos; Arandes, Joaquin Beltran; Bohlin-Nizzetto, Pernilla; Booij, Petra; Budzinski, Hélène; Brunswick, Pamela; Covaci, Adrian; Gallampois, Christine; Grosse, Sylvia; Hindle, Ralph; Ipolyi, Ildiko; Jobst, Karl; Kaserzon, Sarit; Leonards, Pim; Lestremau, Francois; Letzel, Thomas; Magnér, Jörgen; Matsukami, Hidenori; Moschet, Christoph; Oswald, Peter; Plassmann, Merle; Slobodnik, Jaroslav; Yang, Chun

Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.

Springer

2019

Time trends of persistent organic pollutants in 30 year olds sampled in 1986, 1994, 2001 and 2007 in Northern Norway: measurements, mechanistic modeling and a comparison of study designs

Nøst, Therese Haugdahl; Berg, Vivian; Hanssen, Linda; Rylander, Charlotta; Gaudreau, Eric; Dumas, Pierre; Breivik, Knut; Sandanger, Torkjel M

Elsevier

2019

Snow buntings (Plectrophenax nivealis) as bio-indicators for exposure differences to legacy and emerging persistent organic pollutants from the Arctic terrestrial environment on Svalbard

Warner, Nicholas Alexander; Sagerup, Kjetil; Kristoffersen, Siv; Herzke, Dorte; Gabrielsen, Geir W.; Jenssen, Bjørn Munro

Eggs of snow buntings (Plectrophenax nivealis) were applied as a bio-indicator to examine differences in exposure to legacy persistent organic pollutants (POPs) and perflouroalkyl subtances (PFAS) from the terrestrial environment surrounding the settlements of Longyearbyen, Barentsburg and Pyramiden on Svalbard, Norway. Significantly higher concentrations of summed polychlorinated biphenyls (sumPCB7) in eggs collected from Barentsburg (2980 ng/g lipid weight (lw)) and Pyramiden (3860 ng/g lw) compared to Longyearbyen (96 ng/g lw) are attributed to local sources of PCBs within these settlements. Similar findings were observed for p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) where higher median concentrations observed in Pyramiden (173 ng/g lw) and Barentsburg (75 ng/g lw) compared to Longyearbyen (48 ng/g lw) may be influenced by guano inputs from breeding seabird populations, although other point sources cannot be ruled out. Concentrations of perfluorooctane sulphonate (PFOS) and several perfluorinated carboxylic acids (PFCAs) in snow bunting eggs were found to be statistically higher in the populated settlements of Longyearbyen and Barentsburg compared to the abandoned Pyramiden. Narrow foraging ranges of snow buntings during breeding season was useful in assessing point sources of exposure for PCBs and PFAS at particular sites with extreme differences observed between nest locations. SumPCB7 concentrations ranged from 2 μg/g ww to below detection limits between nest sites located less than a kilometer from each other in Pyramiden. Similar findings were observed in Longyearbyen, where several PFCAs ranged from 2 to 55 times higher between nest sites with similar spatial distances. These findings indicate that snow buntings can be a useful bio-indicator offering high spatial resolution for contaminant source apportionment in terrestrial environments on Svalbard.

Elsevier

2019

Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling

Winiger, P.; Barrett, T. E.; Sheesley, R. J.; Huang, L.; Sharma, S.; Barrie, L. A.; Yttri, Karl Espen; Evangeliou, Nikolaos; Eckhardt, Sabine; Stohl, Andreas; Klimont, Z.; Heyes, C.; Semiletov, I. P.; Dudarev, O. V.; Charkin, A.; Shakhova, N.; Holmstrand, H.; Andersson, A.; Gustafsson, Ö.

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.

2019

Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions

Evangeliou, Nikolaos; Kylling, Arve; Eckhardt, Sabine; Myroniuk, Viktor; Stebel, Kerstin; Paugam, Ronan; Zibtsev, Sergiy; Stohl, Andreas

Highly unusual open fires burned in western Greenland between 31 July and 21 August 2017, after a period of warm, dry and sunny weather. The fires burned on peatlands that became vulnerable to fires by permafrost thawing. We used several satellite data sets to estimate that the total area burned was about 2345 ha. Based on assumptions of typical burn depths and emission factors for peat fires, we estimate that the fires consumed a fuel amount of about 117 kt C and emitted about 23.5 t of black carbon (BC) and 731 t of organic carbon (OC), including 141 t of brown carbon (BrC). We used a Lagrangian particle dispersion model to simulate the atmospheric transport and deposition of these species. We find that the smoke plumes were often pushed towards the Greenland ice sheet by westerly winds, and thus a large fraction of the emissions (30 %) was deposited on snow- or ice-covered surfaces. The calculated deposition was small compared to the deposition from global sources, but not entirely negligible. Analysis of aerosol optical depth data from three sites in western Greenland in August 2017 showed strong influence of forest fire plumes from Canada, but little impact of the Greenland fires. Nevertheless, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar data showed that our model captured the presence and structure of the plume from the Greenland fires. The albedo changes and instantaneous surface radiative forcing in Greenland due to the fire emissions were estimated with the SNICAR model and the uvspec model from the libRadtran radiative transfer software package. We estimate that the maximum albedo change due to the BC and BrC deposition was about 0.007, too small to be measured. The average instantaneous surface radiative forcing over Greenland at noon on 31 August was 0.03–0.04 W m−2, with locally occurring maxima of 0.63–0.77 W m−2 (depending on the studied scenario). The average value is up to an order of magnitude smaller than the radiative forcing from other sources. Overall, the fires burning in Greenland in the summer of 2017 had little impact on the Greenland ice sheet, causing a small extra radiative forcing. This was due to the – in a global context – still rather small size of the fires. However, the very large fraction of the emissions deposited on the Greenland ice sheet from these fires could contribute to accelerated melting of the Greenland ice sheet if these fires become several orders of magnitude larger under future climate.

2019

The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates)

Gajski, Goran; Žegura, Bojana; Ladeira, Carina; Pourrut, Bertrand; Del Bo, Cristian; Novak, Matjaž; Srámková, Monika; Milić, Mirta; Gutzkow, Kristine Bjerve; Costa, Solange; Dusinska, Maria; Brunborg, Gunnar; Collins, Andrew Richard

Elsevier

2019

Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes

Boy, Michael; Thomson, Erik S.; Acosta Navarro, Juan-Camilo; Arnalds, Olafur; Batchvarova, Ekaterina; Bäck, Jaana; Berninger, Frank; Bilde, Merete; Brasseur, Zoé; Dagsson-Waldhauserova, Pavla; Castarède, Dimitri; Dalirian, Maryam; de Leeuw, Gerrit; Dragosics, Monika; Duplissy, Ella-Maria; Duplissy, Jonathan; Ekman, Annica; Fang, Keyan; Gallet, Jean-Charles; Glasius, Marianne; Gryning, Sven-Erik; Grythe, Henrik; Hansson, Hans-Christen; Hansson, Margareta; Isaksson, Elisabeth; Iversen, Trond; Jónsdóttir, Ingibjörg Svala; Kasurinen, Ville; Kirkevåg, Alf; Korhola, Atte; Krejci, Radovan; Kristjansson, Jon Egill; Lappalainen, Hanna K.; Lauri, Antti; Leppäranta, Matti; Lihavainen, Heikki; Makkonen, Risto; Massling, Andreas; Meinander, Outi; Nilsson, E. Douglas; Ólafsson, Haraldur; Pettersson, Jan B. C.; Prisle, Nønne L.; Riipinen, Ilona; Roldin, Pontus; Ruppel, Meri; Salter, Matthew E.; Sand, Maria; Seland, Øyvind; Seppä, Heikki; Skov, Henrik; Soares, Joana; Stohl, Andreas; Ström, Johan; Svensson, Jonas; Swietlicki, Erik; Tabakova, Ksenia; Thorsteinsson, Throstur; Virkkula, Aki; Weyhenmeyer, Gesa A.; Wu, Yusheng; Zieger, Paul; Kulmala, Markku

The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols.

The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change–cryosphere interactions that affect Arctic amplification.

2019

Observed recent change in climate and potential for decay of Norwegian wood structures

Grøntoft, Terje

The wood rot decay of structures and buildings in Norway represents high costs. This paper reports the observed trends for the potential rot decay of Norwegian wood structures in the cities of Oslo and Bergen over the recent 55 years, calculated as the “wood rot climate index” developed by Scheffer, and compares the reports with previous reported values based on climate change modelling. The observed change in the wood rot climate index was close to the modelling result. Bergen is exposed directly to the westerly Atlantic winds and has among the highest rain amounts in Norway, whereas Oslo is shielded by the Scandinavian mountain chain and has much less rain. The change in the wood rot climate index since 1961 was about 20% in both cities, but the trend in the index (climate index change per year) was about 80% stronger in Bergen. The absolute index changes were largest in the summer; then spring (50 to 60% of the summer increase); and small, zero, or even negative (autumn in Oslo) in the remaining seasons. The relative changes were higher in the spring than summer and very high in Bergen in the winter from a low value. The change to positive index values in the spring and winter indicates temperature and humidity conditions favoring the growth of wood rot and, thus, extended the rot duration through the year. The expected increase in the future wood rot decay potential in Norway shows the need for increased focus on adaption measures to reduce the related damages and costs.

MDPI

2019

Using life cycle assessment to inform municipal climate mitigation planning

Thorne, Rebecca Jayne; Bouman, Evert; Guerreiro, Cristina D.b.b.; Majchrzak, Anna; Calus, Sylwia

Local governments can play a key role in reducing emissions associated with local energy use. 17 Polish municipalities provided data on energy use and CO2 emissions for 2015. Life Cycle Assessment (LCA) was used to calculate lifecycle impact indicators for greenhouse gases, particulate matter, acidification and eutrophication associated with the annual energy demand in each municipality. Results showed that impacts from energy use increase almost proportionally with total energy used in the participating municipalities due to the heavy reliance on fossil fuels. Analysis of two municipalities of similar size showed that impacts can be attributed to different usage sectors. For one municipality, energy plans should focus on reducing emissions from private transport and associated fuel use. For the other, energy plans should focus on reducing energy demand from residential buildings. This means that a ‘one-size-fits-all’ energy plan, which may be developed at a national level, would not fit all municipalities. The application of LCA allows for identifying and informing energy planning with impact reduction potential for multiple environmental pressures. Analysis of the provided energy use and CO2 data showed large uncertainties in CO2 emission intensities and allowing for sufficient time and guidance in the energy and emissions accounting is recommended.

Elsevier

2019

Abating N in Nordic agriculture - Policy, measures and way forward

Hellsten, Sofie; Dalgaard, Tommy; Rankinen, Katri; Tørseth, Kjetil; Bakken, Lars; Bechmann, Marianne; Kulmala, Airi; Moldan, Filip; Olofsson, Stina; Piil, Kristoffer; Pira, Kajsa; Turtola, Eila

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years.

The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P.

The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries.

To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country.

The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.

Elsevier

2019

Very Strong Atmospheric Methane Growth in the 4 Years 2014-2017: Implications for the Paris Agreement

Nisbet, E. G.; Manning, M. R.; Dlugokencky, E. J.; Fisher, R. E.; Lowry, D.; Michel, S. E.; Myhre, Cathrine Lund; Platt, Stephen Matthew; Allen, G.; Bousquet, P.; Brownlow, R.; Cain, M.; France, J. L.; Hermansen, Ove; Hossaini, R.; Jones, A. E.; Levin, I.; Manning, A. C.; Myhre, Gunnar; Pyle, J. A.; Vaughn, B.; Warwick, N. J.; White, James W. C.

Atmospheric methane grew very rapidly in 2014 (12.7 ± 0.5 ppb/year), 2015 (10.1 ± 0.7 ppb/year), 2016 (7.0 ± 0.7 ppb/year), and 2017 (7.7 ± 0.7 ppb/year), at rates not observed since the 1980s. The increase in the methane burden began in 2007, with the mean global mole fraction in remote surface background air rising from about 1,775 ppb in 2006 to 1,850 ppb in 2017. Simultaneously the 13C/12C isotopic ratio (expressed as δ13CCH4) has shifted, has shifted, now trending negative for more than a decade. The causes of methane's recent mole fraction increase are therefore either a change in the relative proportions (and totals) of emissions from biogenic and thermogenic and pyrogenic sources, especially in the tropics and subtropics, or a decline in the atmospheric sink of methane, or both. Unfortunately, with limited measurement data sets, it is not currently possible to be more definitive. The climate warming impact of the observed methane increase over the past decade, if continued at >5 ppb/year in the coming decades, is sufficient to challenge the Paris Agreement, which requires sharp cuts in the atmospheric methane burden. However, anthropogenic methane emissions are relatively very large and thus offer attractive targets for rapid reduction, which are essential if the Paris Agreement aims are to be attained.
PLAIN LANGUAGE SUMMARY: The rise in atmospheric methane (CH4), which began in 2007, accelerated in the past 4 years. The growth has been worldwide, especially in the tropics and northern midlatitudes. With the rise has come a shift in the carbon isotope ratio of the methane. The causes of the rise are not fully understood, and may include increased emissions and perhaps a decline in the destruction of methane in the air. Methane's increase since 2007 was not expected in future greenhouse gas scenarios compliant with the targets of the Paris Agreement, and if the increase continues at the same rates it may become very difficult to meet the Paris goals. There is now urgent need to reduce methane emissions, especially from the fossil fuel industry.

American Geophysical Union (AGU)

2019

Publication
Year
Category