Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 10066 publications. Showing page 34 of 403:

Publication  
Year  
Category

Kan vi leve uten plast?

Hanssen, Linda (interview subject); Jemterud, Torkild (journalist)

2023

An in vitro 3D advanced lung model for hazard assessment of nanomaterials on human health

Camassa, Laura Maria Azzurra; Anmarkrud, Kristine Haugen; Sadeghiankaffash, Hamed; Elje, Elisabeth; Ervik, Torunn Kringlen; Congying, Z.; Shaposhnikov, S.; Rundén-Pran, Elise; Zienolddiny, Shanbeh

2023

Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015

Cioni, Lara; Plassmann, Merle; Benskin, Jonathan P.; Coelho, Ana Carolina; Nøst, Therese Haugdahl; Rylander, Karin Charlotta Maria; Nikiforov, Vladimir; Sandanger, Torkjel Manning; Herzke, Dorte

Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0–4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.

2023

Monitoring of environmental contaminants in air and precipitation. Annual report 2022.

Halvorsen, Helene Lunder; Pfaffhuber, Katrine Aspmo; Nipen, Maja; Bohlin-Nizzetto, Pernilla; Berglen, Tore Flatlandsmo; Nikiforov, Vladimir; Hartz, William Frederik

This report presents air monitoring data from 2022 for the Norwegian monitoring programme "Atmospheric contaminants". The results cover 260 organic compounds (regulated and non-regulated) and 16 compound groups, 14 heavy metals, and a selection of organic chemicals of concern.

NILU

2023

Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2021

Timmermann, Volkmar; Børja, Isabella; Clarke, Nicholas; Eriksen, Rune; Gohli, Jostein; Hylen, Gro; Jepsen, Jane Uhd; Krokene, Paal; Lange, Holger; Meissner, Helge Rainer; Nagy, Nina Elisabeth; Nordbakken, Jørn-Frode; Solberg, Sverre; Solheim, Halvor; Vindstad, Ole Petter Laksforsmo; Økland, Bjørn; Aas, Wenche

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2021 og trender over tid for følgende temaer:
(i) Landsrepresentativ skogovervåking;
(ii) Skogøkologiske analyser og målinger av luftkjemi på de intensive overvåkingsflatene;
(iii) Overvåking av bjørkemålere i Troms og Finnmark;
(iv) Barkbilleovervåkingen 2021 og mulig overgang til to generasjoner;
(v) Asiatisk askepraktbille – en dørstokkart?
(vi) Overvåking av askeskuddsyke;
(vii) Andre spesielle skogskader i 2021.

NIBIO

2023

Review of Interpreting Gaseous Pollution Data Regarding Heritage Objects

Thickett, David; Grøntoft, Terje

Pollutant gases pose a significant risk to some cultural heritage objects, and surveys have shown that the professionals involved consider themselves to lack knowledge to fully assess risk. Three approaches towards risk assessment, research results, standards and damage functions have been considered. An assessment tool has been developed, collating over 4000 research reports into a scheme for the impact on 22 materials of acetic and formic acids, nitrogen dioxide, ozone and reduced sulphur gases. The application of doses or concentrations has been considered, the impact of measurement time compared to annual exposure investigated and a simple tool derived.

2023

Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling

Tichý, Ondřej; Eckhardt, Sabine; Balkanski, Yves; Hauglustaine, Didier; Evangeliou, Nikolaos

Ammonia (NH3), a significant precursor of particulate matter, affects not only biodiversity, ecosystems, and soil acidification but also climate and human health. In addition, its concentrations are constantly rising due to increasing feeding needs and the large use of fertilization and animal farming. Despite the significance of ammonia, its emissions are associated with large uncertainties, while its atmospheric abundance is difficult to measure. Nowadays, satellite products can effectively measure ammonia with low uncertainty and a global coverage. Here, we use satellite observations of column ammonia in combination with an inversion algorithm to derive ammonia emissions with a high resolution over Europe for the period 2013–2020. Ammonia emissions peak in northern Europe due to agricultural application and livestock management, in western Europe (industrial activity), and over Spain (pig farming). Emissions have decreased by −26 % since 2013 (from 5431 Gg in 2013 to 3994 Gg in 2020), showing that the abatement strategies adopted by the European Union have been very efficient. The slight increase (+4.4 %) in 2015 is also reproduced here and is attributed to some European countries exceeding annual emission targets. Ammonia emissions are low in winter (286 Gg) and peak in summer (563 Gg) and are dominated by the temperature-dependent volatilization of ammonia from the soil. The largest emission decreases were observed in central and eastern Europe (−38 %) and in western Europe (−37 %), while smaller decreases were recorded in northern (−17 %) and southern Europe (−7.6 %). When complemented with ground observations, modelled concentrations using the posterior emissions showed improved statistics, also following the observed seasonal trends. The posterior emissions presented here also agree well with respective estimates reported in the literature and inferred from bottom-up and top-down methodologies. These results indicate that satellite measurements combined with inverse algorithms constitute a robust tool for emission estimates and can infer the evolution of ammonia emissions over large timescales.

2023

Seasonal and latitudinal variability in the atmospheric concentrations of cyclic volatile methyl siloxanes in the Northern Hemisphere

Wania, Frank; Warner, Nicholas Alexander; McLachlan, Michael S; Durham, Jeremy; Lei, Ying Duan; Xu, Shihe

Field data from two latitudinal transects in Europe and Canada were gathered to better characterize the atmospheric fate of three cyclic methylsiloxanes (cVMSs), i.e., octamethyl-cyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). During a year-long, seasonally resolved outdoor air sampling campaign, passive samplers with an ultra-clean sorbent were deployed at 15 sampling sites covering latitudes ranging from the source regions (43.7–50.7 °N) to the Arctic (79–82.5 °N). For each site, one of two passive samplers and one of two field blanks were separately extracted and analyzed for the cVMSs at two different laboratories using gas-chromatography-mass spectrometry. Whereas the use of a particular batch of sorbent and the applied cleaning procedure to a large extent controlled the levels of cVMS in field blanks, and therefore also the method detection and quantification limits, minor site-specific differences in field blank contamination were apparent. Excellent agreement between duplicates was obtained, with 95% of the concentrations reported by the two laboratories falling within a factor of 1.6 of each other. Nearly all data show a monotonic relationship between the concentration and distance from the major source regions. Concentrations in source regions were comparatively constant throughout the year, while the concentration gradient towards remote regions became steeper during summer when removal via OH radicals is at its maximum. Concentrations of the different cVMS oligomers were highly correlated within a given transect. Changes in relative abundance of cVMS oligomers along the transect were in agreement with relative atmospheric degradation rates via OH radicals.

2023

Spatial mapping of emissions

Kuenen, Jeroen; Aardenne, John van; Goodwin, Justin; Mareckova, Katarina; Adams, Martin; Ruyssenaars, Paul; Wankmüller, Robert; Pye, Stephen; King, Katie; Veldeman, Nele; Maas, Wim van der; Lopez-Aparicio, Susana; Plejdrup, Marlene S.; d'elia, Ilaria; Feigenspan, Stefan; Vilardell, Marc Guevara

2023

Energetic Particle Precipitation Reflected in the Global Secondary Ozone Distribution

Espy, Patrick Joseph; Jia, Jia; Murberg, Lise Eder; Løvset, Tiril; Orsolini, Yvan Joseph Georges Emile G.; Zeller, Lilou C.G.; Salinas, Jude; Lee, Jae N.; Wu, Dong Liang; Zhang, Jiarong

2023

Applying Community Standards for Domain-Relevant Metadata to Enhance Data Product FAIRness

Silverman, Morgan L.; Fiebig, Markus; Shook, Michael; Huffer, Elisabeth; Buzanowicz, Megan Elisabeth; Leavor, Sean; Kusterer, John; Chen, Gao

2023

Understanding the role of cities and citizen science in advancing sustainable development goals across Europe: insights from European research framework projects

Liu, Hai Ying; Ahmed, Sohel; Passani, Antonella; Bartonova, Alena

This paper examines the potential impact of citizen science on achieving SDGs in cities. The analysis focuses on projects funded through the European Research Framework Programmes that utilize citizen science practices to involve cities and citizens in addressing sustainability issues. We analyzed a total of 44 projects active between 2016 and 2027, encompassing both ongoing and completed projects. Instead of relying solely on existing literature, we utilized a project database called CORDIS to gather project information. This approach allowed us to develop a comprehensive framework by utilizing uniformly classified data from the database, which is not typically available in literature. Using a four-stage framework analysis method, we assessed the projects' thematic areas, goals, types of solution promoted or tested to address sustainability challenges, methodologies employed, and the impacts achieved or expected. Through this analysis, we identified successful collaborations between citizen science and cities, showcasing examples of effective practice where citizens and cities co-created and tested solutions that contribute to SDGs. This highlights the active role that citizens, as participants or citizen scientists, play in the transition toward SDGs. This study focuses on more than 100 European cities that have been involved in EU-funded research projects implementing and planning to conduct citizen science activities, which directly and indirectly link to various SDGs. Our findings reveal that citizen science practices in cities predominantly address SDG3 (Good health and wellbeing), 11 (Sustainable cities and communities), and 13 (Climate action). Cities that engage citizens in co-creating solutions can enhance their capacity to improve quality of life and reduce climate and environmental impacts. Citizen engagement at the city and community levels can bolster efforts toward achieving SDGs and monitoring progress on a city-wide scale. However, to fully integrate citizen science and its contribution to cities in achieving SDGs, further research is needed to align the SDGs formulated at the national level with those at the city level. This entails exploring how citizen science can align with SDGs indicators and the quantification of SDG targets. Such efforts will facilitate the mainstreaming of citizen science and its potential to drive progress toward SDGs in cities.

2023

Semidiurnal nonmigrating tides in low-latitude lower thermospheric NO: A climatology based on 20 years of Odin/SMR measurements

Grieco, Francesco; Orsolini, Yvan Joseph Georges Emile G.; Pérot, Kristell

The Sub-Millimetre Radiometer (SMR) on board the Odin satellite provides almost 20 years of nitric oxide (NO) measurements in the mesosphere and lower thermosphere (MLT) at equatorial crossing local solar times (LSTs) of 6 AM and 6 PM. In this study, we use Odin/SMR observations to estimate how lower thermospheric NO mixing ratios at low latitudes are affected by solar nonmigrating tides. Most of the previous studies based on satellite data have focused on the signatures of diurnal tides in the MLT and above, while we concentrate here on nonmigrating semidiurnal tides. To study the contribution of these tides to NO mixing ratio variations, we average pairs of NO measurements along ascending and descending orbital tracks at 107 km altitude over latitudes between −40°and +40°. We consider monthly climatologies of these pair-averages and analyse residuals with respect to their zonal mean. In this way, it is possible to study the effect of nonmigrating even-numbered tidal components, albeit there is a non-tidal component arising largely from quasi-stationary planetary waves. Spectral wave amplitudes are extracted using a Fourier transform as function of (apparent) zonal wavenumber with a focus around −30°, −20°and 30°latitudes. From our analysis, it appears that the semidiurnal (apparent) zonal wavenumber 4 arising from the SW6 and SE2 tides is dominant close to the equator (e.g., at −20°), except during some boreal summer months (June, July, August). On the other hand, wave-1 plays a more prominent role at subtropical latitudes, especially in the southern hemisphere, where it surpasses wave-4 during 7 months (March and May-to-October) at −30°. There is little observational evidence to date documenting the presence of the semidiurnal nonmigrating tides in NO in the low-latitude MLT. Our results hence provide one of the first evidences of the climatological signature of these tides in NO, in an altitude range that remains poorly observed.

2023

State of the Climate in 2022: The Arctic

Moon, Twila A.; Thoman, Richard L.; Druckenmiller, Matthew L.; Ahmasuk, Brandon; Backensto, Stacia A.; Ballinger, Thomas J.; Benestad, Rasmus; Berner, Logan T.; Bernhard, Germar H.; Bhatt, Uma S.; Bigalke, Siiri; Bjerke, Jarle W.; Brettschneide, Brian; Christiansen, Hanne H.; Cohen, Judah L.; Dechame, Bertrand; Derksen, Chris; Divine, Dmitry V; Jensen, Caroline Drost; Chereque, Aleksandra Elias; Epstein, Howard E.; Fausto, Robert S.; Fettweis, Xavier; Fioletov, Vitali E.; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Goetz, Scott J.; Grooß, Jens-Uwe; Hanna, Edward; Hanssen-Bauer, Inger; Hendricks, Stefan; Holmes, Robert M.; Ialongo, Iolanda; Isaksen, Ketil; Johnsen, Bjørn; Jones, Timothy; Kaler, Robb S.A.; Kaleschke, Lars; Kim, Seong-Joong; Labe, Zachary M.; Lader, Rick; Lakkala, Kaisa; Lara, Mark J.; Lindsey, Jackie; Loomis, Bryant D.; Luojus, Kari; Macander, Matthew J.; Mamen, Jostein; Mankoff, Ken D.; Manney, Gloria L.; McAfee, Stephanie A.; McClelland, James W.; Meier, Walter N.; Moore, G. W. K.; Mote, Thomas L.; Mudryk, Lawrence; Müller, Rolf; Nyland, Kelsey E.; Overland, James E.; Parrish, Julia K.; Perovich, Donald K.; Petersen, Guðrún Nína; Petty, Alek; Phoenix, Gareth K.; Poinar, Kristin; Rantanen, Mika; Ricker, Robert; Romanovsky, Vladimir E.; Serbin, Shawn P.; Serreze, Mark C.; Sheffield, Gay; Shiklomanov, Alexander I.; Shiklomanov, Nikolay I.; Smith, Sharon L.; Spencer, Robert G. M.; Streletskiy, Dmitry A.; Suslova, Anya; Svendby, Tove Marit; Tank, Suzanne E.; Tedesco, Marco; Tian-Kunze, Xiangshan; Timmermans, Mary-Louise; Tømmervik, Hans; Tretiakov, Mikhail; Walker, Donald A.; Walsh, John E.; Wang, Muyin; Webster, Melinda; Wehrlé, Adrian; Yang, Daqing; Zolkos, Scott

2023

Towards a circular phosphorus economy in Norway - Strategies for integrating agriculture and aquaculture at multiple scales

Müller, Daniel Beat; Hernandez, Miguel Las Heras; Pandit, Avijit Vinayak; Øgaard, Anne Falk; Reitan, Kjell Inge

Phosphorus is a building block for all life and therefore plays an essential role in food production. Currently, large amounts of phosphorus enter the Norwegian food system from abroad in the form of mineral fertilizer, feedstuff, food, as well as micro-ingredients for animal feed, mainly in salmon farming. However, only a small fraction of this phosphorus ends up as food for humans, while the largest part accumulates in soil and water systems. This inefficiency entails two challenges:

1. Phosphorus supply is critical. Phosphate rock, the primary source of phosphorus for fertilizer and micro-ingredient production, is a limited resource that is highly concentrated in a few countries. Over 80% of global phosphate rock reserves are found in only 5 countries, and ~70% are located in Morocco and Morocco-occupied Western Sahara. The high concentration renders many countries vulnerable to geopolitical and economic instabilities and threatens food safety. The EU has therefore included phosphate rock on its list of Critical Raw Materials.
2. The accumulation of phosphorus in water systems can lead to eutrophication and dead zones, threatening fish stocks and other aquatic life. The high phosphorus concentration in soils due to overfertilization over long periods of time increases the danger of losses to water systems by runoff, further exacerbating the eutrophication risk.

A more circular use of phosphorus could simultaneously reduce supply and pollution risks. This is particularly relevant in Norway, where the government has an ambition to increase salmon and trout production from currently 1,5 to 5 million tons by 2050.

Achieving a circular phosphorus economy is a complex task: (i) The land- and the sea-based food systems are increasingly interlinked, for example through agricultural production of fish feed or the application of fish sludge on agricultural land. (ii) The Norwegian phosphorus cycle is increasingly interlinked with that of other countries as trade flows along the entire food supply chain are growing. (iii) Phosphorus fertilizers, both primary and recycled, are often contaminated with heavy metals such as cadmium, uranium, and zinc, which tend to accumulate in soils. Cleaning the phosphorus cycle is therefore vital for soil fertility and human health.

This report is based on the MIND-P project, which studied the Norwegian phosphorus cycle for both agriculture and aquaculture at a farm-by-farm basis and explored options for increasing circularity. The project identified farm-level and structural barriers to managing phosphorus resources more effectively.

We propose four fundamental strategies to overcome these barriers:
1. Develop and maintain a national nutrient accounting.
2. Minimize phosphorus losses and accumulations at farm level.
3. Establish infrastructures for capturing, processing, trade, and use of manure and fish sludge to produce high-quality recycled fertilizers that are tailored to the needs of the users in Norway and abroad.
4. Adopt a regulatory framework to promote a market for recycled fertilizer.
The strategies proposed here were developed with the support of an Advisory Panel consisting of representatives from government, industry, industry associations, and NGOs in an online and two physical workshops conducted in 2022.

Norges teknisk-naturvitenskapelige universitet

2023

Fate of Anthropogenic Particles in Arctic Waters around Svalbard

Philipp, Carolin; Collard, France; Husum, Katrine; Herzke, Dorte; Halsband, Claudia; Gabrielsen, Geir Wing; Hallanger, Ingeborg G.

2023

Phthalate contamination in marine mammals off the Norwegian coast

Andvik, Clare; Bories, Pierre; Harju, Mikael; Borgå, Katrine; Jourdain, Eve; Karoliussen, Richard; Rikardsen, Audun; Routti, Heli; Blévin, Pierre

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.

2023

What do we know about the production and release of persistent organic pollutants in the global environment?

Li, Li; Cheng, Chengkang; Li, Dingsheng; Breivik, Knut; Abbasi, Golnoush; Li, Yi-Fan

Information on the global production and environmental releases of persistent organic pollutants (POPs) is of critical importance for regulating and eliminating these chemical substances of worldwide environmental and health concerns. Here, we conduct an extensive literature review to collect and curate quantitative information on the historical global production and multimedia environmental releases of 25 intentionally produced POPs. Our assembled data indicate that as of 2020, a cumulative total of 31 306 kilotonnes (kt) of the 25 POPs had been synthesized and commercialized worldwide, resulting in cumulative releases of 20 348 kt into the global environment. As of 2020, short-chain chlorinated paraffins were the most produced POP, with a historical global cumulative tonnage amounting to 8795 kt, whereas α-hexachlorocyclohexane (HCH) had the largest historical global cumulative environmental releases of 6567 kt among these 25 POPs. The 1970s witnessed the peak in the annual global production of the 25 investigated POPs. The United States and Europe used to be the hotspots of environmental releases of the 25 investigated POPs, notably in the 1960s and 1970s. By contrast, global environmental releases occurred primarily in China in the 2000s–2010s. Preliminary efforts are also made to integrate the production volume information with “hazard” attributes (persistence, bioaccumulation, toxicity, and long-range transport potential) in the evaluation of potential environmental impacts of the 25 POPs. The results show that dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) are potentially associated with higher environmental impacts than other POPs because they are among the top rankings in both the global cumulative production and hazard indicators. This work for the first time reveals the astonishing magnitudes of POP production and environmental releases in contemporary human history. It also underscores the importance of tonnage information in assessments of POPs, POP candidates, and other chemicals of emerging concern.

2023

Inverse Modeling of Subnational Scale CO2 Emissions Using Data from Denser Surface Observation Networks

Nayagam, Lorna Raja; Maksyutov, Shamil; Oda, Tomohiro; Achari, Rajesh Janardanan; Trisolini, Pamela; Zeng, Jiye; Kaiser, Johannes; Matsunaga, Tsuneo

2023

National N2O emissions (1980-2020) derived from multiple sources of data: magnitudes, trends and drivers

Pan, Naiqing; Tian, Hanqin; Pan, Shufen; Canadell, Josep G.; Thompson, Rona Louise; Ciais, Philippe; Davidson, Eric A.; Ito, Akihiko; Jackson, Robert B.; Jain, Atul K.; Joos, Fortunat; Kou-Giesbrecht, Sian; Lauerwald, Ronny; Li, Ya; Lu, Chaoqun; Millet, Dylan B.; Muntean, Marilena; Patra, Prabir K.; Qin, Xiaoyu; Regnier, Pierre; Shi, Hao; Sun, Qing; Tubiello, Francesco N.; Vuichard, Nicolas; Wells, Kelley C.; Wilson, Chris J.; Winiwarter, Wilfried; Yang, Jia; Yao, Yuanzhi; You, Yongfa; Zaehle, Sönke; Zhou, Feng; Zhu, Qing

2023

Circular economy for aquatic food systems: insights from a multiscale phosphorus flow analysis in Norway

Pandit, Avijit Vinayak; Dittrich, Nils Maximilian; Strand, Andrea Viken; Lozach, Loïs; Hernandez, Miguel Las Heras; Reitan, Kjell Inge; Mueller, Daniel Beat

As wild-caught fish become scarce, feed ingredients for farming fish, such as salmon, are increasingly sourced from agricultural plants that depend on mineral fertilizers. Since these fish are naturally carnivorous, they have difficulty digesting the phosphorus in plant-based feed. So additional phosphorus supplements are added to the feed, resulting in a disproportionate increase in mineral phosphorus use and emission. Aquatic food production is increasingly relying on agriculture and mineral phosphorus resources. The feed surplus and the excreta are seldom collected and recycled, leading to a massive loss of nutrients to water bodies and the seafloor, resulting in local risk for eutrophication. Norway currently produces more than half of the world’s Atlantic salmon, and it is set to increase production from currently 1.5 to 5 Mt. in 2050. This has large implications for feed supply and emissions globally. There is a lack of studies that analyze the phosphorus system in aquatic food production at a sufficient spatial and temporal granularity to effectively inform interventions for a more circular use of phosphorus. Here, we present a multi-scale phosphorus flow analysis at monthly resolution ranging between 2005 and 2021 for aquatic food production in Norway and quantitatively discuss the effectiveness of alternative strategies for improving resource efficiency. The results indicate that P emissions from aquaculture have nearly doubled in the period between 2005 and 2021. The P use efficiency (PUE) in Norwegian aquaculture was 19% in 2021. The addition of phytase to the feed could improve the PUE by 8% by reducing P supplements and emissions by 7 kt/y. The use of Integrated Multi-Trophic Aquaculture close to fish farming sites could absorb emissions by 4 kt/y by creating new marine food products. Sludge collection systems could reduce P emissions by 4 to 11 kt/y, depending on the technology. Using the sludge in local agriculture would exacerbate the current P accumulation in soils close to the coastline, given that the animal density in this region is already high. Hence, a large and sophisticated processing infrastructure will be needed to create transportable, high-quality secondary fertilizers for effective sludge recycling in regions with a P deficit.

2023

Publication
Year
Category